The dimensionality of color vision in carriers of anomalous trichromacy.

Some 12% of women are carriers of the mild, X-linked forms of color vision deficiencies called "anomalous trichromacy." Owing to random X chromosome inactivation, their retinae must contain four classes of cone rather than the normal three; and it has previously been speculated that these female carriers might be tetrachromatic, capable of discriminating spectral stimuli that are indistinguishable to the normal trichromat. However, the existing evidence is sparse and inconclusive. Here, we address the question using (a) a forced-choice version of the Rayleigh test, (b) a test using multidimensional scaling to reveal directly the dimensionality of the participants' color space, and (c) molecular genetic analyses to estimate the X-linked cone peak sensitivities of a selected sample of strong candidates for tetrachromacy. Our results suggest that most carriers of color anomaly do not exhibit four-dimensional color vision, and so we believe that anomalous trichromacy is unlikely to be maintained by an advantage to the carriers in discriminating colors. However, 1 of 24 obligate carriers of deuteranomaly exhibited tetrachromatic behavior on all our tests; this participant has three well-separated cone photopigments in the long-wave spectral region in addition to her short-wave cone. We assess the likelihood that behavioral tetrachromacy exists in the human population.

[1]  T. Sejnowski,et al.  Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. , 2007, Journal of vision.

[2]  G. H. Jacobs,et al.  Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment , 2007, Science.

[3]  J. Bosten,et al.  Multidimensional scaling reveals a color dimension unique to ‘color-deficient’ observers , 2005, Current Biology.

[4]  J. Mollon,et al.  Color discrimination in carriers of color deficiency , 2004, Vision Research.

[5]  J. Mollon,et al.  Modelling the Rayleigh match , 2004, Visual Neuroscience.

[6]  Y. Nishida,et al.  Analysis of L-cone/M-cone visual pigment gene arrays in females by long-range PCR , 2003, Vision Research.

[7]  Karen R Dobkins,et al.  Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye , 2002, Vision Research.

[8]  D. Dacey Primate retina: cell types, circuits and color opponency , 1999, Progress in Retinal and Eye Research.

[9]  S. Shevell,et al.  Trichromatic color vision with only two spectrally distinct photopigments , 1999, Nature Neuroscience.

[10]  Samir S. Deeb,et al.  Position of a 'green-red' hybrid gene in the visual pigment array determines colour-vision phenotype , 1999, Nature Genetics.

[11]  J Nathans,et al.  Red, Green, and Red-Green Hybrid Pigments in the Human Retina: Correlations between Deduced Protein Sequences and Psychophysically Measured Spectral Sensitivities , 1998, The Journal of Neuroscience.

[12]  S. Shevell,et al.  Relating color discrimination to photopigment genes in deutan observers , 1998, Vision Research.

[13]  Joel Pokorny,et al.  The design and use of a cone chromaticity space: A tutorial , 1996 .

[14]  T. Lamb,et al.  Photoreceptor spectral sensitivities: Common shape in the long-wavelength region , 1995, Vision Research.

[15]  Steven K. Shevell,et al.  Variation in color matching and discrimination among deuteranomalous trichromats: Theoretical implications of small differences in photopigments , 1995, Vision Research.

[16]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[17]  J. Mollon,et al.  Luminance noise and the rapid determination of discrimination ellipses in colour deficiency , 1994, Vision Research.

[18]  J. D. Mollon,et al.  A study of women heterozygous for colour deficiencies , 1993, Vision Research.

[19]  J Nathans,et al.  Absorption spectra of the hybrid pigments responsible for anomalous color vision. , 1992, Science.

[20]  J. Pokorny,et al.  Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[21]  Jeremy Nathans,et al.  Absorption spectra of human cone pigments , 1992, Nature.

[22]  J. Winderickx,et al.  Polymorphism in red photopigment underlies variation in colour matching , 1992, Nature.

[23]  Richard A. Bone,et al.  Optical density spectra of the macular pigmentin vivo andin vitro , 1992, Vision Research.

[24]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[25]  Anne B. Fulton,et al.  Central and Peripheral Mechanisms of Colour Vision , 1986 .

[26]  J. Nathans,et al.  Molecular genetics of inherited variation in human color vision. , 1986, Science.

[27]  J. Mollon,et al.  Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  A L Nagy,et al.  Four cone pigments in women heterozygous for color deficiency. , 1981, Journal of the Optical Society of America.

[29]  R. M. Boynton,et al.  Chromaticity diagram showing cone excitation by stimuli of equal luminance. , 1979, Journal of the Optical Society of America.

[30]  R W Rodieck,et al.  Metric of color borders. , 1977, Science.

[31]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[32]  J. J. Vos,et al.  Spectral transmission of the human ocular media. , 1974, Vision research.

[33]  R. Teplitz,et al.  Sex Chromatin of Cone Cells of Human Retina , 1965, Science.

[34]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[35]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[36]  M. Lyon Gene Action in the X-chromosome of the Mouse (Mus musculus L.) , 1961, Nature.

[37]  G. Brindley,et al.  The effects on colour vision of adaptation to very bright lights , 1953, The Journal of physiology.

[38]  H. Vries The fundamental response curves of normal and abnormal dichromatic and trichromatic eyes , 1948 .

[39]  G. Waaler Über die Erblichkeitsverhältnisse der verschiedenen Arten von angeborener Rotgrünblindheit , 1927, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[40]  John William Strutt,et al.  Scientific Papers: Experiments on Colour , 2009 .

[41]  J. Winderickx,et al.  Molecular analysis of human red/green visual pigment gene locus: relationship to color vision. , 2000, Methods in enzymology.

[42]  John D. Mollon ’…aus dreyerley Arten von Membranen oder Molekülen’: George Palmer’s legacy , 1997 .

[43]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[44]  Michael S. Landy,et al.  The Design of Chromatically Opponent Receptive Fields , 1991 .

[45]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[46]  A. Elsner,et al.  High Illuminance Color Matching in Anomalous Trichromacy , 1989 .

[47]  D. Macleod,et al.  Receptoral Constraints on Colour Appearance , 1985 .

[48]  Joel Pokorny,et al.  Congenital and acquired color vision defects , 1979 .

[49]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[50]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[51]  Experiments on Colour , 1881, Nature.