Transforming Evolutionary Search into Higher-Level Evolutionary Search by Capturing Problem Structure

The intuitive idea that good solutions to small problems can be reassembled into good solutions to larger problems is widely familiar in many fields including evolutionary computation. This idea has motivated the building-block hypothesis and model-building optimization methods that aim to identify and exploit problem structure automatically. Recently, a small number of works make use of such ideas by learning problem structure and using this information in a particular manner: these works use the results of a simple search process in primitive units to identify structural correlations (such as modularity) in the problem that are then used to redefine the variational operators of the search process. This process is applied recursively such that search operates at successively higher scales of organization, hence multi-scale search. Here, we show for the first time that there is a simple class of (modular) problems that a multi-scale search algorithm can solve in polynomial time that requires super-polynomial time for other methods. We discuss strengths and limitations of the multi-scale search approach and note how it can be developed further.

[1]  David E. Goldberg,et al.  Conquering hierarchical difficulty by explicit chunking: substructural chromosome compression , 2006, GECCO '06.

[2]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[3]  David E. Goldberg,et al.  Population sizing for entropy-based model building in discrete estimation of distribution algorithms , 2007, GECCO '07.

[4]  David E. Goldberg,et al.  Hierarchical Problem Solving and the Bayesian Optimization Algorithm , 2000, GECCO.

[5]  Thomas Jansen,et al.  A building-block royal road where crossover is provably essential , 2007, GECCO '07.

[6]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.

[7]  Dumitru Dumitrescu,et al.  Towards memoryless model building , 2008, GECCO '08.

[8]  Thomas Jansen,et al.  UNIVERSITY OF DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Upper and Lower Bounds for Randomized Search Heuristics in Black-Box Optimization , 2004 .

[9]  Rob Mills,et al.  How micro-evolution can guide macro-evolution : multi-scale search via evolved modular variation , 2010 .

[10]  Dirk Thierens Linkage tree genetic algorithm: first results , 2010, GECCO '10.

[11]  Dirk Thierens,et al.  On the complexity of hierarchical problem solving , 2005, GECCO '05.

[12]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[13]  Jordan B. Pollack,et al.  Modeling Building-Block Interdependency , 1998, PPSN.

[14]  Pietro Simone Oliveto,et al.  Analysis of Diversity-Preserving Mechanisms for Global Exploration , 2009, Evolutionary Computation.

[15]  J. Pollack,et al.  A computational model of symbiotic composition in evolutionary transitions. , 2003, Bio Systems.

[16]  Dirk Thierens,et al.  The Linkage Tree Genetic Algorithm , 2010, PPSN.

[17]  L. Darrell Whitley,et al.  Building Better Test Functions , 1995, ICGA.

[18]  R. Bellman Dynamic programming. , 1957, Science.

[19]  David E. Goldberg,et al.  Genetic Algorithms, Clustering, and the Breaking of Symmetry , 2000, PPSN.

[20]  D. Michie “Memo” Functions and Machine Learning , 1968, Nature.

[21]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[22]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[23]  Julian Francis Miller,et al.  The Automatic Acquisition, Evolution and Reuse of Modules in Cartesian Genetic Programming , 2008, IEEE Transactions on Evolutionary Computation.

[24]  Ingo Wegener,et al.  Simulated Annealing Beats Metropolis in Combinatorial Optimization , 2005, ICALP.

[25]  Dan Dumitrescu,et al.  Overcoming hierarchical difficulty by hill-climbing the building block structure , 2007, GECCO '07.

[26]  青島 矢一,et al.  書評 カーリス Y. ボールドウィン/キム B. クラーク著 安藤晴彦訳『デザイン・ルール:モジュール化パワー』 Carliss Y. Baldwin & Kim B. Clark/Design Rules, Vol. 1: The Power of Modularity , 2005 .

[27]  David E. Goldberg,et al.  From Twomax To The Ising Model: Easy And Hard Symmetrical Problems , 2002, GECCO.

[28]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[29]  Thomas Jansen,et al.  Exploring the Explorative Advantage of the Cooperative Coevolutionary (1+1) EA , 2003, GECCO.

[30]  Siddhartha Shakya,et al.  A Markovianity based optimisation algorithm , 2012, Genetic Programming and Evolvable Machines.

[31]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[32]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[33]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[34]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[35]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[36]  J. Pollack,et al.  Coevolving High-Level Representations , 1993 .

[37]  Kim B. Clark,et al.  The Option Value of Modularity in Design: An Example From Design Rules, Volume 1: The Power of Modularity , 2000 .

[38]  David E. Goldberg,et al.  Sporadic model building for efficiency enhancement of hierarchical BOA , 2006, GECCO.

[39]  Thilo Gross,et al.  Adaptive coevolutionary networks: a review , 2007, Journal of The Royal Society Interface.

[40]  Richard A. Watson,et al.  Optimization in "self-modeling" complex adaptive systems , 2011, Complex..

[41]  Richard A. Watson,et al.  THE CONCURRENT EVOLUTION OF COOPERATION AND THE POPULATION STRUCTURES THAT SUPPORT IT , 2011, Evolution; international journal of organic evolution.

[42]  Thomas Bäck,et al.  An analysis of the behavior of simplified evolutionary algorithms on trap functions , 2003, IEEE Trans. Evol. Comput..

[43]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[44]  Douglas R. Smith,et al.  Top-Down Synthesis of Divide-and-Conquer Algorithms , 1985, Artif. Intell..

[45]  Per Kristian Lehre,et al.  Black-Box Search by Unbiased Variation , 2010, GECCO '10.

[46]  Adam Prügel-Bennett,et al.  Benefits of a Population: Five Mechanisms That Advantage Population-Based Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[47]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[48]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[49]  Richard A. Watson,et al.  Variable discrimination of crossover versus mutation using parameterized modular structure , 2007, GECCO '07.

[50]  Richard A. Watson,et al.  Emergent associative memory as a local organising principle for global adaptation in adaptive networks , 2011 .

[51]  J. Pollack,et al.  Compositional evolution: interdisciplinary investigations in evolvability, modularity, and symbiosis , 2002 .

[52]  Thomas D. LaToza,et al.  On the supply of building blocks , 2001 .

[53]  Terry Jones,et al.  Crossover, Macromutationand, and Population-Based Search , 1995, ICGA.

[54]  Mark Harman,et al.  A multiple hill climbing approach to software module clustering , 2003, International Conference on Software Maintenance, 2003. ICSM 2003. Proceedings..

[55]  R. Watson,et al.  Optimisation in ‘Self-modelling’ Complex Adaptive Systems , 2011 .

[56]  Pedro Larrañaga,et al.  Protein Folding in Simplified Models With Estimation of Distribution Algorithms , 2008, IEEE Transactions on Evolutionary Computation.

[57]  Richard A. Watson,et al.  Can Selfish Symbioses Effect Higher-Level Selection? , 2009, ECAL.

[58]  Paul J. Schweitzer,et al.  Problem Decomposition and Data Reorganization by a Clustering Technique , 1972, Oper. Res..

[59]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[60]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[61]  John Wakeley,et al.  GENOME STRUCTURE AND THE BENEFIT OF SEX , 2011, Evolution; international journal of organic evolution.

[62]  Richard A. Watson,et al.  Symbiosis, Synergy and Modularity: Introducing the Reciprocal Synergy Symbiosis Algorithm , 2007, ECAL.

[63]  Per Kristian Lehre,et al.  When is an estimation of distribution algorithm better than an evolutionary algorithm? , 2009, 2009 IEEE Congress on Evolutionary Computation.

[64]  Justinian Rosca,et al.  Hierarchical learning with procedural abstraction mechanisms , 1997 .

[65]  Allen Newell,et al.  Chunking in Soar: The anatomy of a general learning mechanism , 1985, Machine Learning.

[66]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[67]  Thomas Jansen,et al.  The Cooperative Coevolutionary (11) EA , 2004, Evolutionary Computation.

[68]  Alden H. Wright,et al.  Efficient Linkage Discovery by Limited Probing , 2003, Evolutionary Computation.

[69]  María Cristina González Morgado Contributions on theoretical aspects of estimation of distributions algorithms , 2006 .

[70]  Thomas Jansen,et al.  A New Framework for the Valuation of Algorithms for Black-Box Optimization , 2002, FOGA.

[71]  G. Wagner,et al.  THE EVOLUTION OF PHENOTYPIC CORRELATIONS AND “DEVELOPMENTAL MEMORY” , 2014, Evolution; international journal of organic evolution.

[72]  Richard A. Watson,et al.  Global Adaptation in Networks of Selfish Components: Emergent Associative Memory at the System Scale , 2011, Artificial Life.

[73]  Uwe Aickelin,et al.  An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering , 2007, J. Oper. Res. Soc..

[74]  Richard A. Watson,et al.  Transformations in the scale of behavior and the global optimization of constraints in adaptive networks , 2011, Adapt. Behav..

[75]  O. Martin,et al.  Hierarchical approach for computing spin glass ground states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.