Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons

[1]  Stephen Corcoran,et al.  Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation , 2017, IUCrJ.

[2]  Takashi Kameshima,et al.  Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL , 2017, Nature.

[3]  Edward N. Baker,et al.  Data archiving and availability in an era of open science , 2017, IUCrJ.

[4]  R. Neutze,et al.  A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 290 ns after photoexcitation , 2016 .

[5]  M. Perbandt,et al.  A multicrystal diffraction data-collection approach for studying structural dynamics with millisecond temporal resolution , 2016, IUCrJ.

[6]  Anton Barty,et al.  Native phasing of x-ray free-electron laser data for a G protein–coupled receptor , 2016, Science Advances.

[7]  Ezequiel Panepucci,et al.  EIGER detector: application in macromolecular crystallography , 2016, Acta crystallographica. Section D, Structural biology.

[8]  Garth J. Williams,et al.  Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography , 2016, Nature Communications.

[9]  A. IJzerman,et al.  Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength. , 2016, Journal of medicinal chemistry.

[10]  Andrew Aquila,et al.  Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data , 2016, IUCrJ.

[11]  T. Nakane Native sulfur/chlorine SAD phasing for serial femtosecond crystallography (CXIDB ID 33) , 2016 .

[12]  K. Diederichs,et al.  In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures , 2016, Acta crystallographica. Section D, Structural biology.

[13]  Anton Barty,et al.  Accurate determination of segmented X-ray detector geometry. , 2015, Optics express.

[14]  S. Boutet,et al.  Serial femtosecond crystallography of soluble proteins in lipidic cubic phase , 2015, IUCrJ.

[15]  Sébastien Boutet,et al.  A novel inert crystal delivery medium for serial femtosecond crystallography , 2015, IUCrJ.

[16]  Nicholas K. Sauter,et al.  A revised partiality model and post-refinement algorithm for X-ray free-electron laser data , 2015, Acta crystallographica. Section D, Biological crystallography.

[17]  Ezequiel Panepucci,et al.  In meso in situ serial X-ray crystallography of soluble and membrane proteins , 2015, Acta crystallographica. Section D, Biological crystallography.

[18]  Sébastien Boutet,et al.  Structure of the Angiotensin Receptor Revealed by Serial Femtosecond Crystallography , 2015, Cell.

[19]  Aaron S. Brewster,et al.  Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams , 2015, Acta crystallographica. Section D, Biological crystallography.

[20]  Sébastien Boutet,et al.  The Coherent X-ray Imaging instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[21]  Ezequiel Panepucci,et al.  Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. , 2015, Acta crystallographica. Section D, Biological crystallography.

[22]  Manfred Burghammer,et al.  Lipidic cubic phase serial millisecond crystallography using synchrotron radiation , 2015, IUCrJ.

[23]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[24]  Changyong Song,et al.  Grease matrix as a versatile carrier of proteins for serial crystallography , 2014, Nature Methods.

[25]  R. Owen,et al.  Time-resolved crystallography using the Hadamard Transform , 2014, Nature Methods.

[26]  Wei Liu,et al.  Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography , 2014, Nature Protocols.

[27]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[28]  Thomas A. White,et al.  Post-refinement method for snapshot serial crystallography , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[30]  H. Lane,et al.  The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. , 2014, Journal of molecular biology.

[31]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[32]  Henry N. Chapman,et al.  Serial crystallography on in vivo grown microcrystals using synchrotron radiation , 2014, IUCrJ.

[33]  Henry van den Bedem,et al.  Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR , 2014, Proceedings of the National Academy of Sciences.

[34]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[35]  Marcin Sikorski,et al.  CSPAD-140k - A Versatile Detector for LCLS Experiments , 2013 .

[36]  Elspeth F. Garman,et al.  RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography , 2013 .

[37]  T. Dierks,et al.  Correction to “Nature’s Polyoxometalate Chemistry: X-ray structure of the Mo Storage Protein Loaded with Discrete Polynuclear Mo–O Clusters” , 2013 .

[38]  Paul D Adams,et al.  Modelling dynamics in protein crystal structures by ensemble refinement , 2012, eLife.

[39]  A. Plückthun,et al.  A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end , 2012, Proceedings of the National Academy of Sciences.

[40]  Gwyndaf Evans,et al.  Outrunning free radicals in room-temperature macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[41]  T. Dierks,et al.  Nature's polyoxometalate chemistry: X-ray structure of the Mo storage protein loaded with discrete polynuclear Mo-O clusters. , 2012, Journal of the American Chemical Society.

[42]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[43]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[44]  Nathaniel Echols,et al.  Accessing protein conformational ensembles using room-temperature X-ray crystallography , 2011, Proceedings of the National Academy of Sciences.

[45]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[46]  C. Dumontet,et al.  Microtubule-binding agents: a dynamic field of cancer therapeutics , 2010, Nature Reviews Drug Discovery.

[47]  Sébastien Boutet,et al.  The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) , 2010 .

[48]  Elspeth F Garman,et al.  Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography. , 2007, Structure.

[49]  A. Marco Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli , 2007, Nature Protocols.

[50]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[51]  Kevin Cowtan,et al.  The Buccaneer software for automated model building , 2006 .

[52]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[53]  Patrick A. Curmi,et al.  Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain , 2004, Nature.

[54]  Aleksandr V. Smirnov,et al.  Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography , 2003, Science.

[55]  B. Bukau,et al.  Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol , 2001, Molecular microbiology.

[56]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[57]  Wilfried Schildkamp,et al.  Structure of a Protein Photocycle Intermediate by Millisecond Time-Resolved Crystallography , 1997, Science.

[58]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[59]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[60]  Ram Seshadri Crystal structures , 2004 .

[61]  P. Emsley,et al.  Coot: model-building tools for molecular graphics. , 2004, Acta crystallographica. Section D, Biological crystallography.

[62]  A. Schaper,et al.  Correspondence e-mail: , 1999 .

[63]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.