Complexity and algorithms for computing Voronoi cells of lattices

In this paper we are concerned with finding the vertices of the Voronoi cell of a Euclidean lattice. Given a basis of a lattice, we prove that computing the number of vertices is a #P-hard problem. On the other hand we describe an algorithm for this problem which is especially suited for low dimensional (say dimensions at most 12) and for highly-symmetric lattices. We use our implementation, which drastically outperforms those of current computer algebra systems, to find the vertices of Voronoi cells and quantizer constants of some prominent lattices.

[1]  Wilhelm Plesken,et al.  Computing Isometries of Lattices , 1997, J. Symb. Comput..

[2]  Jacobo Torán,et al.  The graph isomorphism problem , 2020, Commun. ACM.

[3]  R. V. Randow Introduction to the Theory of Matroids , 1975 .

[4]  Jiri Patera,et al.  Voronoi Domains and Dual Cells in the Generalized Kaleidoscope with Applications to Root and Weight Lattices , 1995, Canadian Journal of Mathematics.

[5]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[6]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[7]  David Avis A C Implementation of the Reverse Search Vertex Enumeration Algorithm(Computational Geometry and Discrete Geometry) , 1994 .

[8]  G. Reinelt,et al.  Combinatorial optimization and small polytopes , 1996 .

[9]  Lenny Fukshansky,et al.  Frobenius Problem and the Covering Radius of a Lattice , 2007, Discret. Comput. Geom..

[10]  Venkatesan Guruswami,et al.  The complexity of the covering radius problem , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[11]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[12]  M M Anzin COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The density of a lattice covering for n = 11 and n = 14 , 2002 .

[13]  Simon Litsyn,et al.  Lattices which are good for (almost) everything , 2005, IEEE Transactions on Information Theory.

[14]  Evgenii P. Baranovskii The Perfect Lattices Gamma(Un), and the Covering Density of Gamma(Un) , 1994, Eur. J. Comb..

[15]  Mathieu Dutour Sikiric,et al.  Polyhedral representation conversion up to symmetries , 2007, ArXiv.

[16]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[17]  Neil J. A. Sloane,et al.  The Cell Structures of Certain Lattices , 1991 .

[18]  Thomas Eriksson,et al.  Optimization of Lattices for Quantization , 1998, IEEE Trans. Inf. Theory.

[19]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[20]  Thomas Zaslavsky,et al.  ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .

[21]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[22]  D. Avis A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm , 2000 .

[23]  Komei Fukuda,et al.  Exact volume computation for polytopes: a practical study , 1996 .

[24]  M. E. Dyer,et al.  The Complexity of Vertex Enumeration Methods , 1983, Math. Oper. Res..

[25]  James G. Oxley,et al.  Matroid theory , 1992 .

[26]  M. M. Anzin On lattice covering density for n = 13 and n = 15 , 2006 .

[27]  Mathieu Dutour Sikiric,et al.  Classification of eight dimensional perfect forms , 2006 .

[28]  Emanuele Viterbo,et al.  Computing the Voronoi cell of a lattice: the diamond-cutting algorithm , 1996, IEEE Trans. Inf. Theory.

[29]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[30]  G. Ziegler Lectures on Polytopes , 1994 .

[31]  Wilhelm Plesken,et al.  Crystallographic Algorithms and Tables , 1998 .

[32]  Daniele Micciancio Almost Perfect Lattices, the Covering Radius Problem, and Applications to Ajtai's Connection Factor , 2003, SIAM J. Comput..

[33]  Frank Vallentin,et al.  Computational Approaches to Lattice Packing and Covering Problems , 2006, Discret. Comput. Geom..

[34]  Jean B. Lasserre,et al.  Integration on a convex polytope , 1998 .

[35]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[36]  N. Linial Hard enumeration problems in geometry and combinatorics , 1986 .

[37]  Vladimir Gurvich,et al.  Generating All Vertices of a Polyhedron Is Hard , 2006, SODA '06.

[38]  N. J. A. Sloane,et al.  Quantizing Using Lattice Intersections , 2002 .

[39]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[40]  Guy Kindler,et al.  Approximating CVP to Within Almost-Polynomial Factors is NP-Hard , 2003, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[41]  Michel Deza,et al.  Delaunay Polytopes of Cut Lattices , 1995 .

[42]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[43]  Oded Regev,et al.  Hardness of the covering radius problem on lattices , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).