Technological architecture evolutions of information systems: Trade-off and optimization

In the normal life span of large enterprises, the strategic management of IT often evolves. Existing services must be replaced with new services without impairing operations. The problem of scheduling such replacement is of critical importance for the success of the operation. We analyze this problem from a quantitative point of view, underlining the trade-off nature of its solutions. We formalize this multiobjective optimization problem as a mathematical programming formulation. We discuss its theoretical properties and show that real-world instances can be solved by standard off-the-shelf tools.

[1]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[2]  G. Nemhauser,et al.  Integer Programming , 2020 .

[3]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[4]  Richard C. Larson,et al.  Model Building in Mathematical Programming , 1979 .

[5]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[6]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[7]  Peter Bernus,et al.  Handbook on Architectures of Information Systems , 1999 .

[8]  Jerry N. Luftman Competing in the Information Age , 2003 .

[9]  Simon Bliudze,et al.  Towards a Functional Formalism for Modelling Complex Industrial Systems , 2004, Complexus.

[10]  Daniel Krob,et al.  Modelling of Complex Software Systems: A Reasoned Overview , 2006, FORTE.

[11]  R. Marciniak « Performance du système d'information. Analyse de la valeur, organisation et management. Neuf scènes de la vie quotidienne d'un DSI » , 2008 .

[12]  Leo Liberti,et al.  Reformulations in Mathematical Programming: Definitions and Systematics , 2009, RAIRO Oper. Res..

[13]  Sonia Cafieri,et al.  Reformulations in Mathematical Programming: A Computational Approach , 2009, Foundations of Computational Intelligence.

[14]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[15]  Leo Liberti,et al.  Optimal Technological Architecture Evolutions of Information Systems , 2010, CSDM.