Computational Science – ICCS 2019

We provide a simple framework for the synthesis of quantum circuits based on a numerical optimization algorithm. This algorithm is used in the context of the trapped-ions technology. We derive theoretical lower bounds for the number of quantum gates required to implement any quantum algorithm. Then we present numerical experiments with random quantum operators where we compute the optimal parameters of the circuits and we illustrate the correctness of the theoretical lower bounds. We finally discuss the scalability of the method with the number

[1]  Kourosh Modarresi,et al.  Algorithmic Approach for Learning a Comprehensive View of Online Users , 2016, ICCS.

[2]  Kourosh Modarresi,et al.  Recommendation System Based on Complete Personalization , 2016, ICCS.

[3]  J. Friedman Stochastic gradient boosting , 2002 .

[4]  D. Whiteson,et al.  Deep Learning and Its Application to LHC Physics , 2018, Annual Review of Nuclear and Particle Science.

[5]  J. Josse,et al.  missMDA: A Package for Handling Missing Values in Multivariate Data Analysis , 2016 .

[6]  Kourosh Modarresi,et al.  An Efficient Deep Learning Model for Recommender Systems , 2018, ICCS.

[7]  Xiaohui Yan,et al.  A biterm topic model for short texts , 2013, WWW.

[8]  Tong Zhang,et al.  Empirical Study of Recommender Systems Using Linear Classifiers , 2001, PAKDD.

[9]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[10]  Andrew Rosenberg,et al.  Classifying Skewed Data: Importance Weighting to Optimize Average Recall , 2012, INTERSPEECH.

[11]  R. Gunst,et al.  Generalized ridge regression: a note on negative ridge parameters , 1983 .

[12]  Joshua B. Tenenbaum,et al.  Separating Style and Content with Bilinear Models , 2000, Neural Computation.

[13]  Gary King,et al.  Amelia II: A Program for Missing Data , 2011 .

[14]  Shyhtsun Felix Wu,et al.  Measuring message propagation and social influence on Twitter.com , 2013, Int. J. Commun. Networks Distributed Syst..

[15]  O. Schulz,et al.  Deep learning based pulse shape discrimination for germanium detectors , 2019, The European Physical Journal C.

[16]  Klaus von Lampe,et al.  Organized Crime and Trust:: On the conceptualization and empirical relevance of trust in the context of criminal networks , 2004 .

[17]  Robert Legenstein,et al.  Improved neighborhood-based algorithms for large-scale recommender systems , 2008, NETFLIX '08.

[18]  Nitesh V. Chawla,et al.  C4.5 and Imbalanced Data sets: Investigating the eect of sampling method, probabilistic estimate, and decision tree structure , 2003 .

[19]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[20]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[21]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[23]  Raghuram Ramanujan,et al.  Machine Learning Methods for Track Classification in the AT-TPC , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[24]  Gene H. Golub,et al.  A local regularization method using multiple regularization levels , 2007 .

[25]  D. W. Scott On optimal and data based histograms , 1979 .

[26]  J. Friedman,et al.  Classification and Regression Trees (Wadsworth Statistics/Probability) , 1984 .

[27]  Kathleen M. Carley,et al.  Modeling and Simulating Terrorist Networks in Social and Geospatial Dimensions , 2007, IEEE Intelligent Systems.

[28]  Yang Liu,et al.  Who Influenced You? Predicting Retweet via Social Influence Locality , 2015, ACM Trans. Knowl. Discov. Data.

[29]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[30]  Viridiana Ríos,et al.  Why did Mexico become so violent? A self-reinforcing violent equilibrium caused by competition and enforcement , 2013 .

[31]  Jan H. Kwakkel,et al.  Radicalization under deep uncertainty: a multi‐model exploration of activism, extremism, and terrorism , 2014 .

[32]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[33]  Hironobu Fujiyoshi,et al.  Boosted random forest , 2015, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[34]  Scott Counts,et al.  Predicting the Speed, Scale, and Range of Information Diffusion in Twitter , 2010, ICWSM.

[35]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[36]  Florian Strub,et al.  Hybrid Collaborative Filtering with Autoencoders , 2016 .

[37]  Scott Sanner,et al.  AutoRec: Autoencoders Meet Collaborative Filtering , 2015, WWW.

[38]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[39]  K. Gamage,et al.  Comparative analysis of pulse shape discrimination methods in a 6Li loaded plastic scintillator , 2015 .

[40]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[41]  Carlo Morselli,et al.  The Efficiency/Security Trade-Off in Criminal Networks , 2007, Soc. Networks.

[42]  Jeffery T. Walker Advancing Science and Research in Criminal Justice/Criminology: Complex Systems Theory and Non‐Linear Analyses , 2007 .

[43]  Henry Mintzberg,et al.  Of strategies, deliberate and emergent , 1985, Strategic Management Journal.

[44]  B. Boltjes,et al.  A Multi-Methodology Framework for Modelling Opponent Organisations in the Operational Context , 2017 .

[45]  Sanjeev Khudanpur,et al.  A study on data augmentation of reverberant speech for robust speech recognition , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[46]  A. Tikhonov On the stability of inverse problems , 1943 .

[47]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009 .

[48]  Joshua B. Tenenbaum,et al.  Separating Style and Content , 1996, NIPS.

[49]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[50]  Antonius Spapens,et al.  Macro networks, collectives, and business processes: An integrated approach to organized crime , 2010 .

[51]  S. A. Pozzi,et al.  Machine learning for digital pulse shape discrimination , 2012, 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC).

[52]  Karandeep Singh,et al.  Towards full scale population dynamics modelling with an agent based and micro-simulation based framework , 2015, 2015 17th International Conference on Advanced Communication Technology (ICACT).

[53]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[54]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[55]  Matan Sela,et al.  3D Face Reconstruction by Learning from Synthetic Data , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[56]  Kourosh Modarresi,et al.  Computation of Recommender System Using Localized Regularization , 2015, ICCS.

[57]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[58]  H. Robbins A Stochastic Approximation Method , 1951 .

[59]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[60]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[61]  Sandie Taylor Crime and Criminality: A multidisciplinary approach , 2015 .

[62]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[63]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[64]  Dimitri Palaz,et al.  Analysis of CNN-based speech recognition system using raw speech as input , 2015, INTERSPEECH.

[65]  Maya Gokhale,et al.  Accelerating a Random Forest Classifier: Multi-Core, GP-GPU, or FPGA? , 2012, 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines.

[66]  J. Wood,et al.  Shape coexistence in atomic nuclei , 2011 .

[67]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[68]  I. Jolliffe Rotation of principal components: choice of normalization constraints , 1995 .

[69]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[70]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[71]  Ulrich Brunsmann,et al.  FPGA-GPU architecture for kernel SVM pedestrian detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.