Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms

The present work reports on the development of modeling and optimization for micro-electric discharge machining (μ-EDM) process. Artificial neural network (ANN) is used for analyzing the material removal of µ-EDM to establish the parameter optimization model. A feed forward neural network with back propagation algorithm is trained to optimize the number of neurons and number of hidden layers to predict a better material removal rate. A neural network model is developed using MATLAB programming, and the trained neural network is simulated. When experimental and network model results are compared for the performance considered, it is observed that the developed model is within the limits of the agreeable error. Then, genetic algorithms (GAs) have been employed to determine optimum process parameters for any desired output value of machining characteristics. This well-trained neural network model is shown to be effective in estimating the MRR and is improved using optimized machining parameters.

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  A. Mamalis,et al.  Macroscopic and microscopic phenomena of electro-discharge machined steel surfaces: An experimental investigation , 1987 .

[3]  I. Puertas,et al.  A Study of Optimization of Machining Parameters for Electrical Discharge Machining of Boron Carbide , 2004 .

[4]  Jose Mathew,et al.  Modeling and Optimization of Process Parameters in Micro Wire EDM by Genetic Algorithm , 2009 .

[5]  Dong-Mok Lee,et al.  Optimization of electric discharge machining using simulated annealing , 2009 .

[6]  A. Gadalla,et al.  MACHINING OF WC-Co COMPOSITES , 1989 .

[7]  Ammar Sami Mohammad,et al.  Experimental Study of Conventional Wire Electrical Discharge Machining for Microfabrication , 2008 .

[8]  José Antonio Sánchez,et al.  A numerical model of the EDM process considering the effect of multiple discharges , 2009 .

[9]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[10]  M. Ghoreishi,et al.  Investigation into the Effect of Voltage Excitation of Pre-Ignition Spark Pulse on the Electro-Discharge Machining (EDM) Process , 2007 .

[11]  Ajit Singh,et al.  A thermo-electric model of material removal during electric discharge machining , 1999 .

[12]  Nirupam Chakraborti,et al.  Modelling Noisy Blast Furnace Data using Genetic Algorithms and Neural Networks , 2006 .

[13]  Norliana Mohd Abbas,et al.  A review on current research trends in electrical discharge machining (EDM) , 2007 .

[14]  George P. Petropoulos,et al.  Modeling of surface finish in electro-discharge machining based upon statistical multi-parameter analysis , 2004 .

[15]  Nirupam Chakraborti,et al.  Analyzing Leaching Data for Low-Grade Manganese Ore Using Neural Nets and Multiobjective Genetic Algorithms , 2009 .

[16]  J. A. McGeough,et al.  Computer applications in unconventional machining , 2000 .

[17]  Nirupam Chakraborti,et al.  Identification of Factors Governing Mechanical Properties of TRIP-Aided Steel Using Genetic Algorithms and Neural Networks , 2008 .

[18]  Nirupam Chakraborti,et al.  Analyzing Sparse Data for Nitride Spinels Using Data Mining, Neural Networks, and Multiobjective Genetic Algorithms , 2008 .

[19]  Ching-Tien Lin,et al.  Electrical Discharge Machining (EDM) Characteristics Associated with Electrical Discharge Energy on Machining of Cemented Tungsten Carbide , 2008 .

[20]  M. Ghoreishi,et al.  Neural-network-based modeling and optimization of the electro-discharge machining process , 2008 .

[21]  Frank Pettersson,et al.  A genetic algorithms based multi-objective neural net applied to noisy blast furnace data , 2007, Appl. Soft Comput..

[22]  Ming-Guo Her,et al.  Study of the Batch Production of Micro Parts Using the EDM Process , 2002 .

[23]  N. P. Hung,et al.  Development of Microreplication Process—Micromolding , 2003 .

[24]  R. Levary Computer integrated supply chain , 2001 .

[25]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[26]  Philip T. Eubank,et al.  Electrical Discharge Machining of ZrB2 -Based Ceramics , 1996 .

[27]  Stephen T. Newman,et al.  State of the art electrical discharge machining (EDM) , 2003 .

[28]  R. K. Bhoi,et al.  Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Machining , 2005 .

[29]  R. Perez,et al.  Theoretical modeling of energy balance in electroerosion , 2004 .

[30]  Mukund R. Patel,et al.  Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model , 1989 .

[31]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[32]  Jose Mathew,et al.  Effect of work material and machining conditions on the accuracy and quality of micro holes , 2009 .

[33]  Y. Guu,et al.  Study of the Effect of Machining Parameters on the Machining Characteristics in Electrical Discharge Machining of Fe-Mn-Al Alloy , 2005 .

[34]  H. Hocheng,et al.  EFFECTS OF WORKPIECE ROTATION ON MACHINABILITY DURING ELECTRICAL-DISCHARGE MACHINING , 2001 .

[35]  Pei-Jen Wang,et al.  Comparisons of neural network models on material removal rate in electrical discharge machining , 2001 .

[36]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[37]  S. H. Yeo,et al.  Analytical approximation of the erosion rate and electrode wear in micro electrical discharge machining , 2008 .

[38]  D. E. Dimla,et al.  Neural network solutions to the tool condition monitoring problem in metal cutting—A critical review of methods , 1997 .

[39]  Yi Wang,et al.  A hybrid intelligent method for modelling the EDM process , 2003 .

[40]  Farhat Ghanem,et al.  Thermal and mechanical numerical modelling of electric discharge machining process , 2008 .

[41]  Z. Katz,et al.  Analysis of micro-scale EDM process , 2005 .

[42]  Pei-Jen Wang,et al.  Semi-empirical model of surface finish on electrical discharge machining , 2001 .

[43]  H. S. Shan,et al.  Optimal Selection of Machining Conditions in the Electrojet Drilling Process Using Hybrid NN-DF-GA Approach , 2006 .

[44]  Nirupam Chakraborti,et al.  Analyzing Fe–Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms , 2009 .