NOON state generation beyond the Lamb–Dicke limit in trapped-ion systems

In this paper, we show that multi-phonon NOON states can be generated in a two-dimensional anisotropic trapped-ion system. In the proposal, two laser pulses are applied to an ion along different directions in the ion trap plane to exchange the information between the external and internal states of the ion. Different from the previous frameworks, the proposal is outside the Lamb–Dicke regime. The distinct advantage of the proposed scheme is that the entanglement generation is deterministic and no measurement on the system is required. Numerical simulations show that the fidelity of the prepared entangled states is strongly affected by Lamb–Dicke parameters.

[1]  Vogel,et al.  Nonlinear coherent states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[2]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[3]  M. Feng,et al.  Adiabatic Mach-Zehnder interferometer via an array of trapped ions , 2011, 1110.1429.

[4]  J. S. Pedernales,et al.  Nonlinear quantum Rabi model in trapped ions , 2017, 1709.07378.

[5]  Bo Zhao,et al.  Heralded generation of an atomic NOON state. , 2010, Physical review letters.

[6]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[7]  Dieter Meschede,et al.  Microwave control of atomic motion in optical lattices. , 2009, Physical review letters.

[8]  Vogel,et al.  Squeezing in resonance fluorescence from a trapped ion. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[10]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[11]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[12]  Farhan Saif,et al.  Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED , 2007 .

[13]  Chui-Ping Yang,et al.  Efficient scheme for generation of photonic NOON states in circuit QED. , 2014, Optics letters.

[14]  T. Hansson,et al.  Quantum interference structures in trapped-ion dynamics beyond the Lamb-Dicke and rotating wave approximations , 2008, 0803.0485.

[15]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[16]  R. Cazan,et al.  Spectroscopy on a single trapped ¹³⁷Ba⁺ ion for nuclear magnetic octupole moment determination. , 2012, Optics express.

[17]  H. Moya-Cessa,et al.  High NOON states in trapped ions , 2012, 1304.6702.

[18]  Emission spectrum of a harmonically trapped two-level atom (7 pages) , 2006 .

[19]  N. Vitanov,et al.  Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses , 2012, 1209.4488.

[20]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  F. Schmidt-Kaler,et al.  Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor. , 2002, Physical review letters.

[22]  A. M. Steane,et al.  Simple experimental methods for trapped-ion quantum processors , 1998 .

[23]  P. Kok,et al.  Linear optics and projective measurements alone suffice to create large-photon-number path entanglement , 2001, quant-ph/0109080.

[24]  P. Knight,et al.  A family of exact eigenstates for a single trapped ion interacting with a laser field , 2001, quant-ph/0110167.

[25]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[26]  Nonlinear Jaynes-Cummings dynamics of a trapped ion. , 1995 .

[27]  Mark Um,et al.  NOON States of Nine Quantized Vibrations in Two Radial Modes of a Trapped Ion. , 2016, Physical review letters.

[28]  Özgür E. Müstecaplıoğlu,et al.  Long-lived entangled qudits in a trapped three-level ion beyond the Lamb–Dicke limit , 2008 .

[29]  Jonathan P. Dowling,et al.  Creation of large-photon-number path entanglement conditioned on photodetection , 2001, quant-ph/0112002.

[30]  Zhi-Rong Zhong A simplified scheme for realizing multi-atom NOON state , 2010 .

[31]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[32]  F. Nori,et al.  Engineering quantum pure states of a trapped cold ion beyond the Lamb-Dicke limit , 2003, quant-ph/0308079.

[33]  J. Cirac,et al.  Laser cooling of two trapped ions: Sideband cooling beyond the Lamb-Dicke limit , 1998, quant-ph/9812014.

[34]  Shi-Biao Zheng,et al.  Fast and simple scheme for generating NOON states of photons in circuit QED , 2013, Scientific Reports.

[35]  C. F. Roos,et al.  Investigating a qubit candidate: Spectroscopy on the S 1 / 2 to D 5 / 2 transition of a trapped calcium ion in a linear Paul trap , 2000 .

[36]  Hugo Cable,et al.  Efficient generation of large number-path entanglement using only linear optics and feed-forward. , 2007, Physical review letters.

[37]  Peng Shi,et al.  Generation of NOON states via Raman transitions in a bimodal cavity , 2013, Quantum Inf. Process..

[38]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[39]  M. Plenio,et al.  Protected ultrastrong coupling regime of the two-photon quantum Rabi model with trapped ions , 2017, 1703.10539.

[40]  Shi-Biao Zheng,et al.  Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion , 2018, Physical Review A.

[41]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[42]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[43]  Holger F. Hofmann,et al.  High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light , 2007, 0705.0047.

[44]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[45]  M B Plenio,et al.  Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. , 2012, Physical review letters.

[46]  Chen-Kuan Chou,et al.  Toward a scalable quantum computing architecture with mixed species ion chains , 2016, Quantum Inf. Process..

[47]  Erik Lucero,et al.  Deterministic entanglement of photons in two superconducting microwave resonators. , 2010, Physical review letters.

[48]  Jonathan P. Dowling,et al.  A Bootstrapping Approach for Generating Maximally Path-Entangled Photon States , 2007 .

[49]  Frank K. Wilhelm,et al.  Generation and detection of NOON states in superconducting circuits , 2010, 1006.1336.

[50]  Takayoshi Kobayashi,et al.  Phase measurement at the Heisenberg limit with three photons , 2005 .

[51]  Shi-Biao Zheng,et al.  Deterministic Entanglement Swapping in a Superconducting Circuit. , 2019, Physical review letters.

[52]  Wei Wu,et al.  Quantum simulation of the Weyl equation with a trapped ion , 2019, Quantum Inf. Process..

[53]  Vogel,et al.  Quantum nondemolition measurement of the motional energy of a trapped atom. , 1996, Physical review letters.

[54]  Frederick W Strauch,et al.  All-resonant control of superconducting resonators. , 2012, Physical review letters.

[55]  Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit , 2002, quant-ph/0205077.

[56]  Jonathan P Dowling,et al.  Bootstrapping approach for generating maximally path-entangled photon states. , 2007, Physical review letters.