A CLASS OF LYM ORDERS IN DIVISOR LATTICES
暂无分享,去创建一个
[1] Jun Wang,et al. NORMALIZED MATCHING PROPERTY OF A CLASS OF SUBSPACE LATTICES , 2007 .
[2] Ko-Wei Lih,et al. An improvement on a spernerity proof of Horrocks , 2001, Theor. Comput. Sci..
[3] David G. C. Horrocks. On Lih's Conjecture concerning Spernerity , 1999, Eur. J. Comb..
[4] David G. C. Horrocks. Nested Chain Partitions of Hamiltonian Filters , 1998, J. Comb. Theory, Ser. A.
[5] K. Engel. Sperner Theory , 1996 .
[6] Xiaoya Zha. On a Conjecture on the Sperner Property , 1989, Eur. J. Comb..
[7] G. F. Clements. Antichains in the set of subsets of a multiset , 1985, Discret. Math..
[8] Douglas B. West,et al. Some Remarks on Normalized Matching , 1983, J. Comb. Theory, Ser. A.
[9] Jerrold R. Griggs. Collections of subsets with the Sperner property , 1982 .
[10] Peter Frankl,et al. A generalization of Sperner's theorem , 1981 .
[11] Ko-Wei Lih. Sperner Families over a Subset , 1980, J. Comb. Theory, Ser. A.
[12] E. Rodney Canfield. On a problem of rota , 1978 .
[13] D. Kleitman,et al. Proof techniques in the theory of finite sets , 1978 .
[14] L. H. Harper. The Morphology of Partially Ordered Sets , 1974, J. Comb. Theory, Ser. A.
[15] Daniel J. Kleitman,et al. Normalized Matching in Direct Products of Partial Orders , 1973 .
[16] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .