A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743−322

Accreting stellar-mass black holes often show a ‘Type-C’ quasi-periodic oscillation (QPO) in their X-ray flux and an iron emission line in their X-ray spectrum. The iron line is generated through continuum photons reflecting off the accretion disc, and its shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The physical origin of the QPO has long been debated, but is often attributed to Lense–Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space–time. This predicts a characteristic rocking of the iron line between red- and blueshift as the receding and approaching sides of the disc are respectively illuminated. Here we report on XMM–Newton and NuSTAR observations of the black hole binary H1743−322 in which the line energy varies systematically over the ∼4 s QPO cycle (3.70σ significance), as predicted. This provides strong evidence that the QPO is produced by Lense–Thirring precession, constituting the first detection of this effect in the strong gravitation regime. There are however elements of our results harder to explain, with one section of data behaving differently than all the others. Our result enables the future application of tomographic techniques to map the inner regions of black hole accretion discs.

[1]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[2]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[3]  P. Uttley,et al.  Where are the X-ray quasi-periodic oscillations in active galaxies? , 2005 .

[4]  Mario Vietri,et al.  Correlations in the Quasi-periodic Oscillation Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession Model , 1999, astro-ph/9907346.

[5]  D. M. Teixeira,et al.  CONSERVATIVE GRMHD SIMULATIONS OF MODERATELY THIN, TILTED ACCRETION DISKS , 2014, 1406.5514.

[6]  T. Dauser,et al.  X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS , 2013, 1303.2112.

[7]  A. Ingram,et al.  Solutions to the relativistic precession model , 2014, 1408.0884.

[8]  Iron line variability of discoseismic corrugation modes , 2013, 1307.4971.

[9]  O. Blaes,et al.  Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk , 2007, 0706.4303.

[10]  C. Done,et al.  Limits on spin determination from disc spectral fitting in GX 339−4 , 2009, 0911.3281.

[11]  T. Maccarone,et al.  POLARIZATION MODULATION FROM LENSE–THIRRING PRECESSION IN X-RAY BINARIES , 2015, 1505.00015.

[12]  Mario Vietri,et al.  Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-Ray Binaries , 1997, astro-ph/9709085.

[13]  R. Sunyaev,et al.  Hard X-ray spectrum of Cyg X-1 , 1979, Nature.

[14]  A. Fabian,et al.  A broad iron line in LMC X-1 , 2012, 1209.3269.

[15]  Yunjin Kim,et al.  Nuclear Spectroscopic Telescope Array (NuSTAR) Mission , 2013, 2013 IEEE Aerospace Conference.

[16]  Jeroen Homan,et al.  A Precessing Ring Model for Low-Frequency Quasi-periodic Oscillations , 2005, astro-ph/0512595.

[17]  G. Matt,et al.  Iron Kα lines from X-ray photoionized accretion discs , 1993 .

[18]  A. Fabian,et al.  A comprehensive range of X-ray ionized-reflection models , 2005 .

[19]  P. Uttley,et al.  X-ray reverberation around accreting black holes , 2014, 1405.6575.

[20]  M. Klis,et al.  Phase-resolved spectroscopy of low-frequency quasi-periodic oscillations in GRS 1915+105 , 2014, 1411.1967.

[21]  Shu Zhang,et al.  A systematic study on energy dependence of quasi-periodic oscillation frequency in GRS 1915+105 , 2011, 1107.3621.

[22]  Daniel J. Price,et al.  TEARING UP THE DISK: HOW BLACK HOLES ACCRETE , 2012, 1209.1393.

[23]  D. M. Teixeira,et al.  NO EVIDENCE FOR BARDEEN–PETTERSON ALIGNMENT IN GRMHD SIMULATIONS AND SEMI-ANALYTIC MODELS OF MODERATELY THIN, PROGRADE, TILTED ACCRETION DISKS , 2014, 1406.5515.

[24]  P. Uttley,et al.  Probing the origin of quasi-periodic oscillations: the short-time-scale evolution of phase lags in GRS 1915+105 , 2016, 1603.03392.

[25]  Joern Wilms,et al.  THE REFLECTION COMPONENT FROM CYGNUS X-1 IN THE SOFT STATE MEASURED BY NuSTAR AND SUZAKU , 2013, 1310.3830.

[26]  M. Klis,et al.  Overview of QPOs in neutron-star low-mass X-ray binaries , 2006 .

[27]  C. Done,et al.  The effect of frame dragging on the iron Kα line in X-ray binaries , 2012, 1208.0728.

[28]  M. Henze,et al.  Geometrical constraints on the origin of timing signals from black holes , 2014, 1404.7293.

[29]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[30]  R. Wijnands,et al.  The Complex Phase-Lag Behavior of the 3-12 Hz Quasi-Periodic Oscillations during the Very High State of XTE J1550–564 , 1999, The Astrophysical journal.

[31]  Diego Molteni,et al.  Smoothed particle hydrodynamics confronts theory: Formation of standing shocks in accretion disks and winds around black holes , 1993, astro-ph/9310042.

[32]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[33]  K. Belczyński,et al.  BLACK HOLE SPIN–ORBIT MISALIGNMENT IN GALACTIC X-RAY BINARIES , 2010, 1001.1107.

[34]  T. M. Belloni,et al.  Variability of X-ray binaries from an oscillating hot corona , 2010, 1001.2116.

[35]  J. Krolik,et al.  A STEADY-STATE ALIGNMENT FRONT IN AN ACCRETION DISK SUBJECTED TO LENSE–THIRRING TORQUES , 2015, 1505.01050.

[36]  D. Lai,et al.  Precession of Magnetically Driven Warped Disks and Low-Frequency Quasi-periodic Oscillations in Low-Mass X-Ray Binaries , 2002 .

[37]  P. Chris Fragile,et al.  Low-frequency quasi-periodic oscillations spectra and Lense–Thirring precession , 2009 .

[38]  MIT,et al.  Evidence for a Link between Fe Kα Emission-Line Strength and Quasi-periodic Oscillation Phase in a Black Hole , 2005, astro-ph/0501371.

[39]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[40]  M. Axelsson,et al.  Fast variability as a probe of the smallest regions around accreting black holes , 2013, 1301.0627.

[41]  L. Stella,et al.  Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: the case of GRO J1655-40 , 2013, 1309.3652.

[42]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[43]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.

[44]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[45]  J. E. Pringle,et al.  Self-induced warping of accretion discs , 1996 .

[46]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[47]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[48]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[49]  C. Done,et al.  A re-analysis of the iron line in the XMM–Newton data from the low/hard state in GX339−4 , 2009, 0911.3243.

[50]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997 .

[51]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[52]  F. Lu,et al.  THE ENERGY DEPENDENCE OF THE CENTROID FREQUENCY AND PHASE LAG OF THE QUASI-PERIODIC OSCILLATIONS IN GRS 1915+105 , 2009, 0912.4769.

[53]  P. Uttley,et al.  Inclination-dependent spectral and timing properties in transient black hole X-ray binaries , 2014, 1405.2026.

[54]  Laura Maraschi,et al.  A two-phase model for the X-ray emission from Seyfert galaxies , 1991 .

[55]  M. iller,et al.  EVIDENCE FOR A LINK BETWEEN FE Kα EMISSION LINE STRENGTH AND QPO PHASE IN A BLACK HOLE , 2008 .

[56]  P. Uttley,et al.  Accretion disc variability in the hard state of black hole X-ray binaries , 2009, 0905.0587.

[57]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[58]  Daniel J. Price,et al.  On the Bardeen???Petterson effect in black hole accretion discs , 2015, 1501.01687.

[59]  J. Poutanen,et al.  A UNIFIED LENSE–THIRRING PRECESSION MODEL FOR OPTICAL AND X-RAY QUASI-PERIODIC OSCILLATIONS IN BLACK HOLE BINARIES , 2013, 1310.3821.

[60]  D. Walton,et al.  UvA-DARE ( Digital Academic Repository ) No Time for Dead Time : Timing Analysis of Bright Black Hole Binaries with NuSTAR , 2015 .

[61]  R. Rosner,et al.  Structured coronae of accretion disks , 1979 .

[62]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[63]  J. Qu,et al.  The energy dependence of the three types of low-frequency quasi-periodic oscillations in the black hole candidate H1743−322 , 2013 .

[64]  Kip S. Thorne,et al.  Cygnus X-1: an interpretation of the spectrum and its variability. , 1975 .

[65]  Alexander S. Silbergleit,et al.  “Stable” Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology , 2001, astro-ph/0107168.

[66]  M. Klis Quasi-Periodic Oscillations and Noise in Low-Mass X-Ray Binaries , 1989 .

[67]  Chris Nixon,et al.  Broken discs: Warp propagation in accretion discs , 2012, 1201.1297.