Where do small, weakly inertial particles go in a turbulent flow?

Abstract We report experimental results on the dynamics of heavy particles of the size of the Kolmogorov scale in a fully developed turbulent flow. The mixed Eulerian structure function of two-particle velocity and acceleration difference vectors $\langle {\delta }_{r} \mathbi{v}\boldsymbol{\cdot} {\delta }_{r} {\mathbi{a}}_{\mathbi{p}} \rangle $ was observed to increase significantly with particle inertia for identical flow conditions. We show that this increase is related to a preferential alignment between these dynamical quantities. With increasing particle density the probability for those two vectors to be collinear was observed to grow. We show that these results are consistent with the preferential sampling of strain-dominated regions by inertial particles.

[1]  Hui Meng,et al.  Experimental and numerical investigation of inertial particle clustering in isotropic turbulence , 2008, Journal of Fluid Mechanics.

[2]  R. Shaw PARTICLE-TURBULENCE INTERACTIONS IN ATMOSPHERIC CLOUDS , 2003 .

[3]  Jakob Mann,et al.  Experimental Study of Relative, Turbulent Diffusion , 1999 .

[4]  J. Eaton,et al.  Preferential concentration of particles in homogeneous and isotropic turbulence , 2005 .

[5]  S. Ott,et al.  Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  R. Betchov,et al.  An inequality concerning the production of vorticity in isotropic turbulence , 1956, Journal of Fluid Mechanics.

[7]  A. Pumir,et al.  Intermittent particle distribution in synthetic free-surface turbulent flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Lance R. Collins,et al.  Clustering of aerosol particles in isotropic turbulence , 2005, Journal of Fluid Mechanics.

[9]  Haitao Xu,et al.  Acceleration correlations and pressure structure functions in high-reynolds number turbulence. , 2007, Physical review letters.

[10]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[11]  Armann Gylfason,et al.  Inertial clustering of particles in high-Reynolds-number turbulence. , 2008, Physical review letters.

[12]  G. Falkovich,et al.  Acceleration of rain initiation by cloud turbulence , 2002, Nature.

[13]  G. Falkovich,et al.  Intermittent distribution of heavy particles in a turbulent flow , 2004 .

[14]  Holger Homann,et al.  Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow , 2009, Journal of Fluid Mechanics.

[15]  E. Bodenschatz,et al.  Inertial effects on two-particle relative dispersion in turbulent flows , 2010, 1002.1805.

[16]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[17]  Leonid I. Zaichik,et al.  Statistical models for predicting pair dispersion and particle clustering in isotropic turbulence and their applications , 2009 .

[18]  Alain Pumir,et al.  The pirouette effect in turbulent flows , 2011 .

[19]  Wolfgang Kinzelbach,et al.  Lagrangian measurement of vorticity dynamics in turbulent flow , 2005, Journal of Fluid Mechanics.

[20]  A. Cartellier,et al.  Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence , 2002, Journal of Fluid Mechanics.

[21]  François G. Schmitt,et al.  Intermittent turbulence and copepod dynamics: Increase in encounter rates through preferential concentration , 2008 .

[22]  Lance R. Collins,et al.  Reynolds number scaling of particle clustering in turbulent aerosols , 2004 .

[23]  L. Biferale,et al.  Acceleration statistics of heavy particles in turbulence , 2006, Journal of Fluid Mechanics.

[24]  L. Collins,et al.  Inertial particle relative velocity statistics in homogeneous isotropic turbulence , 2012, Journal of Fluid Mechanics.

[25]  L. Collins,et al.  Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations , 1997, Journal of Fluid Mechanics.

[27]  Eberhard Bodenschatz,et al.  A quantitative study of three-dimensional Lagrangian particle tracking algorithms , 2006 .

[28]  Haitao Xu,et al.  Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows , 2008 .

[29]  A. Cartellier,et al.  Preferential concentration of heavy particles: A Voronoï analysis , 2010 .

[30]  A. Tsinober,et al.  Velocity derivatives in the atmospheric surface layer at Reλ=104 , 2001 .

[31]  A. Kerstein,et al.  Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence , 1987 .

[32]  M. Vergassola,et al.  Particles and fields in fluid turbulence , 2001, cond-mat/0105199.

[33]  Haitao Xu,et al.  Tracking Lagrangian trajectories in position–velocity space , 2008 .