A Finite Volume Scheme for Diffusion Problems on General Meshes Applying Monotony Constraints

In order to increase the accuracy and the stability of a scheme dedicated to the approximation of diffusion operators on any type of grids, we propose a method which locally reduces the curvature of the discrete solution where the loss of monotony is observed. The discrete solution is shown to fulfill a variational formulation, thanks to the use of Lagrange multipliers. We can then show its convergence to the solution of the continuous problem, and an error estimate is derived. A numerical method, based on Uzawa's algorithm, is shown to provide accurate and stable approximate solutions to various problems. Numerical results show the increase of precision due to the application of the method.

[1]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[2]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[3]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[4]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[5]  R. Herbin,et al.  An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .

[6]  Christophe Le Potier,et al.  Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .

[7]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[8]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[9]  Thierry Gallouët,et al.  A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis , 2007 .

[10]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[11]  Bradley T. Mallison,et al.  A compact multipoint flux approximation method with improved robustness , 2008 .

[12]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[13]  Michel Bierlaire,et al.  Introduction à l"optimisation non linéaire , 2001 .

[14]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[15]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[16]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .