A Finite Volume Scheme for Diffusion Problems on General Meshes Applying Monotony Constraints
暂无分享,去创建一个
Robert Eymard | O. Angelini | C. Chavant | Eric Chénier | R. Eymard | E. Chénier | C. Chavant | O. Angelini
[1] Daniil Svyatskiy,et al. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..
[2] Zhiqiang Sheng,et al. Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..
[3] Christophe Le Potier,et al. Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .
[4] Enrico Bertolazzi,et al. A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..
[5] R. Herbin,et al. An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .
[6] Christophe Le Potier,et al. Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .
[7] R. Eymard,et al. 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .
[8] Daniil Svyatskiy,et al. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..
[9] Thierry Gallouët,et al. A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis , 2007 .
[10] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[11] Bradley T. Mallison,et al. A compact multipoint flux approximation method with improved robustness , 2008 .
[12] F. Boyer,et al. Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .
[13] Michel Bierlaire,et al. Introduction à l"optimisation non linéaire , 2001 .
[14] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[15] Alexandre Ern,et al. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .
[16] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .