Linear Stationary Iterative Methods for the Force-Based Quasicontinuum Approximation

Force-based multiphysics coupling methods have become popular since they provide a simple and efficient coupling mechanism, avoiding the difficulties in formulating and implementing a consistent coupling energy. They are also the only known pointwise consistent methods for coupling a general atomistic model to a finite element continuum model. However, the development of efficient and reliable iterative solution methods for the force-based approximation presents a challenge due to the non-symmetric and indefinite structure of the linearized force-based quasicontinuum approximation, as well as to its unusual stability properties. In this paper, we present rigorous numerical analysis and computational experiments to systematically study the stability and convergence rate for a variety of linear stationary iterative methods.

[1]  Mitchell Luskin,et al.  Iterative Solution of the Quasicontinuum Equilibrium Equations with Continuation , 2008, J. Sci. Comput..

[2]  J. Tinsley Oden,et al.  On the application of the Arlequin method to the coupling of particle and continuum models , 2008 .

[3]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[4]  Christoph Ortner,et al.  THE ROLE OF THE PATCH TEST IN 2D ATOMISTIC-TO-CONTINUUM COUPLING METHODS ∗ , 2011, 1101.5256.

[5]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[6]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[7]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[8]  PING LIN,et al.  Convergence Analysis of a Quasi-Continuum Approximation for a Two-Dimensional Material Without Defects , 2007, SIAM J. Numer. Anal..

[9]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[10]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .

[11]  Mitchell Luskin,et al.  An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation , 2009, SIAM J. Numer. Anal..

[12]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[13]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[14]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[15]  Brian Van Koten,et al.  A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods , 2010, 1012.6031.

[16]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[17]  Noam Bernstein,et al.  Hybrid atomistic simulation methods for materials systems , 2009 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[20]  Christoph Ortner,et al.  Sharp Stability Estimates for the Force-based Quasicontinuum Method , 2009 .

[21]  M. Luskin,et al.  An Analysis of the Quasi-Nonlocal Quasicontinuum Approximation of the Embedded Atom Model , 2010, 1008.3628.

[22]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[23]  Endre Süli,et al.  ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION , 2008 .

[24]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[25]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[26]  Alexander V. Shapeev,et al.  The Spectrum of the Force-Based Quasicontinuum Operator for a Homogeneous Periodic Chain , 2010, Multiscale Model. Simul..

[27]  Christoph Ortner,et al.  Accuracy of quasicontinuum approximations near instabilities , 2009, 0905.2914.

[28]  Mitchell Luskin,et al.  Analysis of a force-based quasicontinuum approximation , 2006 .

[29]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[30]  Christoph Ortner,et al.  Iterative Methods for the Force-based Quasicontinuum Approximation , 2009 .

[31]  F. Legoll,et al.  Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics , 2005 .

[32]  Christoph Ortner,et al.  Sharp Stability Estimates for the Force-Based Quasicontinuum Approximation of Homogeneous Tensile Deformation , 2010, Multiscale Model. Simul..

[33]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[34]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[35]  L E Shilkrot,et al.  Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.

[36]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[37]  Mitchell Luskin,et al.  AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION ON QUASICONTINUUM ERROR , 2008 .

[38]  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potential: 1D and 2D Case , 2010 .

[39]  Xingjie Helen Li,et al.  A Generalized Quasi-Nonlocal Atomistic-to-Continuum Coupling Method with Finite Range Interaction , 2010 .

[40]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[41]  Brian Van Koten,et al.  Analysis of Energy-Based Blended Quasi-Continuum Approximations , 2011, SIAM J. Numer. Anal..

[42]  Yanzhi Zhang,et al.  A Quadrature-Rule Type Approximation to the Quasi-Continuum Method , 2010, Multiscale Model. Simul..

[43]  Alexander V. Shapeev,et al.  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in One and Two Dimensions , 2010, Multiscale Model. Simul..