Understanding hydrogen scrambling and infrared spectrum of bare CH5+ based on ab initio simulations.

A comprehensive study of the properties of protonated methane obtained from ab initio molecular dynamics simulations is presented. Comparing computed infrared spectra to the measured one gives further support to the high fluxionality of bare CH(5)(+). The computational trick to partially freezing out large-amplitude motion, in particular hydrogen scrambling and internal rotation of the H(2) moiety, leads to an understanding of the measured IR spectrum despite the underlying rapid hydrogen scrambling motion that interconverts dynamically structures of different symmetry and chemical bonding pattern. In particular, the fact that C-H stretching modes involving the carbon nucleus and those protons that form the H(2) moiety and the CH(3) tripod, respectively, result in distinct peaks is arguably experimental support for three-center two-electron bonding being operative at experimental conditions. It is proposed that hydrogen scrambling is associated with the softening of a mode that involves the bending of the H(2) moiety relative to the CH(3) tripod, which characterizes the C(s) ground-state structure. The potential energy surface that is mapped on to a two dimensional subspace of internal coordinates provides insight into the dynamical mechanism for exchange of hydrogens between CH(3) tripod and the three-center bonded H(2) moiety that eventually leads to full hydrogen scrambling.

[1]  M. Deskevich,et al.  Large-amplitude quantum mechanics in polyatomic hydrides. II. A particle-on-a-sphere model for XH(n) (n=4,5). , 2005, The Journal of chemical physics.

[2]  Gregory A. Voth,et al.  Path‐Integral Centroid Methods in Quantum Statistical Mechanics and Dynamics , 2007 .

[3]  F. Stillinger Theory and Molecular Models for Water , 2007 .

[4]  Hua Hou,et al.  Computational study of the ion-molecule reactions involving fluxional cations: CH4+ + H2--> CH5+ + H and isotope effect. , 2005, The journal of physical chemistry. A.

[5]  D. Marx,et al.  Understanding the Infrared Spectrum of Bare CH5+ , 2005, Science.

[6]  P. Jensen,et al.  Coulomb explosion imaging: the CH3+ and H3O+ molecules , 2005 .

[7]  D. Gerlich Probing the structure of CH5+ ions and deuterated variants via collisions. , 2005, Physical chemistry chemical physics : PCCP.

[8]  M. J. Jordan,et al.  CH5+: chemistry's chameleon unmasked. , 2005, Journal of the American Chemical Society.

[9]  S. Schlemmer,et al.  Experimental determination of the nu5 cis-bending vibrational frequency and Renner-Teller structure in ground state (X2Piu) C2H2+ using laser induced reactions. , 2005, Physical review letters.

[10]  D. Marx,et al.  Quantum corrections to classical time-correlation functions: hydrogen bonding and anharmonic floppy modes. , 2004, The Journal of chemical physics.

[11]  Alex Brown,et al.  Quantum and classical studies of vibrational motion of CH5+ on a global potential energy surface obtained from a novel ab initio direct dynamics approach. , 2004, The Journal of chemical physics.

[12]  Ian R. Craig,et al.  Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. , 2004, The Journal of chemical physics.

[13]  S. Yurchenko,et al.  A theoretical study of the millimeterwave spectrum of CH 5 , 2004 .

[14]  H. Taylor,et al.  An Accurate Theoretical Prediction of the Zero Point Vibrational Energy of CH5 , 2004 .

[15]  B. Braams,et al.  Ab initio diffusion Monte Carlo calculations of the quantum behavior of CH5+ in full dimensionality , 2004 .

[16]  Alex Brown,et al.  Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface , 2003 .

[17]  S. Carter,et al.  MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules , 2003 .

[18]  D. Marx,et al.  Experimental versus simulated Coulomb-explosion images of flexible molecules: Structure of protonated acetylene C2H3+ , 2003 .

[19]  A. Sax,et al.  Numerical determination of pseudorotation constants , 2002 .

[20]  M. Klein,et al.  Hydrocarbon Reactivity in the Superacid SbF5/HF: an ab Initio Molecular Dynamics Study , 2002 .

[21]  S. Schlemmer,et al.  Laser induced reactions in a 22-pole ion trap: C2H2++hν3+H2→C2H3++H , 2002 .

[22]  G. Olah 100 years of carbocations and their significance in chemistry. , 2001, Journal of Organic Chemistry.

[23]  A. Goeppert,et al.  Solvated CH5+ in liquid superacid. , 2001, Chemistry.

[24]  Z. Vager Coulomb explosion imaging of molecules , 2001 .

[25]  P. Schreiner Does CH5+ Have (a) “Structure?” A Tough Test for Experiment and Theory , 2000 .

[26]  P. Schreiner Hat CH5+ (eine) „Struktur“? Ein harter Test für Experiment und Theorie , 2000 .

[27]  J. Leszczynski,et al.  The structure and nature of interactions in carbonium ions, CH+3(H2)n (n=1–9): a theoretical study , 2000 .

[28]  G. Kramer CH5+ Stability and Mass Spectrometry , 1999 .

[29]  Mark E. Tuckerman,et al.  Quantum dynamics via adiabatic ab initio centroid molecular dynamics , 1999 .

[30]  M. Parrinello,et al.  CH5+: The Cheshire Cat Smiles , 1999, Science.

[31]  Oka,et al.  CH5+: the infrared spectrum observed , 1999, Science.

[32]  S. Schlemmer,et al.  Laser excited N2+ in a 22-pole ion trap:: Experimental studies of rotational relaxation processes , 1999 .

[33]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[34]  Andreas Savin,et al.  TOPOLOGICAL BIFURCATION ANALYSIS : ELECTRONIC STRUCTURE OF CH5+ , 1997 .

[35]  P. Bunker,et al.  Ab Initio Calculation of the Rotational Spectrum of CH5+ and CD5+ , 1997 .

[36]  Structure and dynamics of protonated methane: CH5+ at finite temperatures , 1997 .

[37]  G. Olah,et al.  From Kekulé's Tetravalent Methane to Five-, Six-, and Seven-Coordinate Protonated Methanes1 , 1997 .

[38]  J. Noga,et al.  CH5+ : THE STORY GOES ON. AN EXPLICITLY CORRELATED COUPLED-CLUSTER STUDY , 1997 .

[39]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[40]  P. Bunker A Preliminary Study of the Proton Rearrangement Energy Levels and Spectrum of CH+5 , 1996 .

[41]  M. Parrinello,et al.  The Effect of Quantum and Thermal Fluctuations on the Structure of the Floppy Molecule C2H3+ , 1996, Science.

[42]  G. Olah My Search for Carbocations and Their Role in Chemistry (Nobel Lecture) , 1995 .

[43]  D. Boo,et al.  Infrared spectroscopy of the molecular hydrogen solvated carbonium ions, CH+5(H2)n (n=1–6) , 1995 .

[44]  G. A. Olah Meine Suche nach Carbokationen und deren Bedeutung in der Chemie (Nobel‐Vortrag) , 1995 .

[45]  J. Tse,et al.  Dynamics of Carbonium Ions Solvated by Molecular Hydrogen: CH5+(H2)n (n = 1, 2, 3) , 1995, Science.

[46]  M. Parrinello,et al.  Structural quantum effects and three-centre two-electron bonding in CH+5 , 1995, Nature.

[47]  Tse,et al.  Structural dynamics of protonated methane and acetylene. , 1995, Physical review letters.

[48]  A.F.G. van der Meer,et al.  The Free-Electron-Laser user facility FELIX , 1995 .

[49]  S. J. Collins,et al.  Density functional studies of the carbonium ion species CH+5, C2H+7 and C3H+9 , 1994 .

[50]  Michele Parrinello,et al.  Ab initio path-integral molecular dynamics , 1994 .

[51]  G. Scuseria The elusive signature of CH5+ , 1993, Nature.

[52]  Jianshu Cao,et al.  A new perspective on quantum time correlation functions , 1993 .

[53]  Seung Joon Kim,et al.  Structure and dissociation energy of the weakly bound complex, hydrogen-methonium ion, CH5+(H2) , 1993 .

[54]  H. Schaefer,et al.  CH+5: The never‐ending story or the final word? , 1993 .

[55]  Y. Lee,et al.  Infrared spectra of CH+5 core in CH+5 (H2) , 1993 .

[56]  Barnett,et al.  Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. , 1993, Physical review. B, Condensed matter.

[57]  P. Schleyer,et al.  Does CH 5+ prefer a C2v rather than a Cs structure? , 1992 .

[58]  D. Talbi,et al.  Quantum chemical calculations for a better understanding of the mechanism of CH3++H2 radiative association , 1992 .

[59]  A. Heck,et al.  On the structure of protonated methane , 1991, Journal of the American Society for Mass Spectrometry.

[60]  K. Hiraoka,et al.  Gas-phase solvation of CH+5 with H2 , 1991 .

[61]  M. Henchman,et al.  A beam scattering study of the dynamics of CH+4(CH4,CH3)CH+5 reaction in the eV collision energy range: Three competing mechanisms of CH+5 formation , 1990 .

[62]  W. Kutzelnigg,et al.  MP2-R12 calculations on the relative stability of carbocations , 1990 .

[63]  K. Hiraoka,et al.  Gas-phase stability and structure of cluster ions CH5+(CH4)n with n=1-9 , 1989 .

[64]  R. Naaman,et al.  Coulomb Explosion Imaging of Small Molecules , 1989, Science.

[65]  T. Oka Infrared spectroscopy of carbo-ions , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[66]  R. Saykally Infrared laser spectroscopy of molecular ions. , 1988, Science.

[67]  D. Dixon,et al.  Structure, vibrational spectrum, and energetics of the CH+5 ion. A theoretical investigation , 1987 .

[68]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[69]  M. Simonetta,et al.  A theoretical investigation of energetics and structures of CH5+(CH4)n clusters for n = 1–4 , 1985 .

[70]  A. D. McLean,et al.  Molecular orbital predictions of the vibrational frequencies of some molecular ions. , 1985, The Journal of chemical physics.

[71]  N. Adams,et al.  Isotope exchange and collisional association in the reactions of CH3+ and its deuterated analogs with H2, HD, and D2 , 1982 .

[72]  M. Henchman,et al.  Isotope exchange in the reactions H3O+ + D2O, NH4+ + ND3, CH5+ CD4 and their mirror reactions at thermal energies , 1982 .

[73]  M. Henchman,et al.  Estimation of enthalpy changes in several ion-molecule reactions in involving H-D exchange from zero-point energy considerations , 1982 .

[74]  J. Pople,et al.  Molecular orbital theory of the electronic structure of organic molecules. 40. Structures and energies of C1-C3 carbocations including effects of electron correlation , 1981 .

[75]  A. Mclachlan Gene duplications in the structural evolution of chymotrypsin. , 1979, Journal of molecular biology.

[76]  J. Pople Molecular orbital studies of the energies and structure of polyatomic cations , 1976 .

[77]  J. Futrell,et al.  On the structure of CH5+; A study of hydron transfer reactions from CH4H+ and CD4H+ tandem-ICR , 1975 .

[78]  P. Kebarle,et al.  Energetics, stabilities, and possible structures of CH5+(CH4)n clusters from gas phase study of equilibriums CH5+(CH4)n-1 + CH4 = CH5+(CH4)n for n = 1-5 , 1975 .

[79]  P. Gaspar,et al.  The methanium ion, CH5+. Evidence for the structure of a nonclassical ion from reaction studies by ion cyclotron resonance spectroscopy , 1974 .

[80]  W. Kutzelnigg,et al.  Ab initio calculations of small hydrides including electron correlation , 1974 .

[81]  P. C. Hariharan,et al.  Molecular orbital theory of simple carbonium ions , 1972 .

[82]  L. Curtiss,et al.  Molecular orbital theory of the electronic structure of organic compounds. X. Systematic study of geometries and energies of AHn molecules and cations , 1971 .

[83]  J. Pople,et al.  Molecular orbital theory of the electronic structure of organic compounds. VI. Geometries and energies of small hydrocarbons , 1971 .

[84]  W. Kutzelnigg,et al.  Near hartree-fock energy and equilibrium geometry of CH+5 , 1970 .

[85]  J. Pople,et al.  Theoretical structures for protonated methane and protonated ethane , 1970 .

[86]  W. Lugt,et al.  Retention and inversion in bimolecular substitution reactions of methane , 1969 .

[87]  S. Ehrenson An examination of hydrogen exchange in CH+5 by the CNDO method , 1969 .

[88]  G. Klopman,et al.  Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5 , 1969 .

[89]  W. Kutzelnigg,et al.  Ab-Initio Calculations of Small Hydrides including electron correlation: II. Preliminary results for the CH4 ground state , 1968 .

[90]  D. Stevenson,et al.  Rate of the Gaseous Reactions, X++YH=XH++Y , 1955 .