Holographic Correloscopy—Unconventional Holographic Techniques For Imaging a Three-Dimensional Object Through an Opaque Diffuser or Via a Scattering Wall: A Review

Techniques of unconventional holography, called holographic correloscopy, for imaging a three-dimensional (3-D) object through an opaque diffuser or via a scattering wall are reviewed. This paper is not intended to be a general overview. Instead, it will focus and shed light on less-known techniques termed coherence holography, photon-correlation holography, remote imaging digital holography, and dual-reference holography. This paper will introduce how they perform 3-D imaging through a diffuser or via a scattering wall with a thin but strongly scattering layer.

[1]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[2]  M. Fink,et al.  Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations , 2014, Nature Photonics.

[3]  Marek Elbaum,et al.  Laser Correlography: Transmission of High-Resolution Object Signatures Through the Turbulent Atmosphere , 1974 .

[4]  G Indebetouw,et al.  Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography. , 2000, Optics letters.

[5]  Partha P. Banerjee,et al.  Recent Advances in Digital Holography , 2014 .

[6]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[7]  G. Pedrini,et al.  Looking through a diffuser and around an opaque surface: a holographic approach. , 2014, Optics express.

[8]  Mitsuo Takeda,et al.  Coherence Holography: A Thought on Synthesis and Analysis of Optical Coherence Fields , 2009 .

[9]  Mitsuo Takeda,et al.  Spatial stationarity of statistical optical fields for coherence holography and photon correlation holography. , 2013, Optics letters.

[10]  E. Wolf Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[11]  Feng,et al.  Memory effects in propagation of optical waves through disordered media. , 1988, Physical review letters.

[12]  広 久保田,et al.  Principle of Optics , 1960 .

[13]  Joseph W. Goodman,et al.  WAVEFRONT‐RECONSTRUCTION IMAGING THROUGH RANDOM MEDIA , 1966 .

[14]  R. Twiss,et al.  Applications of Intensity Interferometry in Physics and Astronomy , 1969 .

[15]  Paul S. Idell,et al.  Imaging Correlography With Sparse Arrays Of Detectors , 1988 .

[16]  E. Wolf,et al.  Generalized stokes parameters of random electromagnetic beams. , 2005, Optics letters.

[17]  Jingang Zhong,et al.  Dynamic imaging through turbid media based on digital holography. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Mitsuo Takeda,et al.  Photon correlation holography. , 2011, Optics express.

[19]  Mitsuo Takeda,et al.  Improved illumination system for spatial coherence control. , 2010, Applied optics.

[20]  Demetri Psaltis,et al.  Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. , 2010, Optics express.

[21]  O. Katz,et al.  Looking around corners and through thin turbid layers in real time with scattered incoherent light , 2012, Nature Photonics.

[22]  Mitsuo Takeda,et al.  Vectorial coherence holography. , 2011, Optics express.

[23]  Wei Wang,et al.  Spatial statistical optics and spatial correlation holography: A review , 2014 .

[24]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[25]  Wolfgang Osten,et al.  Recent advances in digital holography [invited]. , 2014, Applied optics.

[26]  J Rosen,et al.  Longitudinal spatial coherence applied for surface profilometry. , 2000, Applied optics.

[27]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[28]  Mitsuo Takeda,et al.  Real-time coherence holography. , 2010, Optics express.

[29]  R. Raskar,et al.  Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging , 2012, Nature Communications.

[30]  A. Michelson,et al.  Measurement of the Diameter of Alpha-Orionis by the Interferometer. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Rakesh Kumar Singh,et al.  Recovery of complex valued objects from two-point intensity correlation measurement , 2014 .

[32]  H. Kogelnik,et al.  Holographic Imaging Through a Random Medium , 1968 .

[33]  Alexander Jesacher,et al.  Lensless imaging through thin diffusive media. , 2014, Optics express.

[34]  I. Freund Looking through walls and around corners , 1990 .

[35]  Emmett N. Leith,et al.  Imaging through scattering media with holography , 1992 .

[36]  Changhuei Yang,et al.  Focusing on moving targets through scattering samples. , 2014, Optica.

[37]  Wei Wang,et al.  Coherence holography. , 2005, Optics express.

[38]  YongKeun Park,et al.  Recent advances in wavefront shaping techniques for biomedical applications , 2015, 1502.05475.

[39]  R. Twiss,et al.  Correlation between photons in two coherent beams of light , 1994 .

[40]  Mitsuo Takeda,et al.  Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator. , 2006, Optics express.

[41]  E. Leith,et al.  Holographic Imagery Through Diffusing Media , 1966 .

[42]  Mitsuo Takeda,et al.  Stokes holography. , 2012, Optics letters.

[43]  HAUZ KHAS,et al.  The Indian Institute of Technology, Delhi , 1963, Nature.

[44]  A. Mosk,et al.  Control of light transmission through opaque scattering media in space and time. , 2010, Physical review letters.

[45]  F. Gori Matrix treatment for partially polarized, partially coherent beams. , 1998, Optics letters.

[46]  Sylvain Gigan,et al.  Image transmission through an opaque material. , 2010, Nature communications.

[47]  P. Meystre Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[48]  G. Lerosey,et al.  Controlling waves in space and time for imaging and focusing in complex media , 2012, Nature Photonics.

[49]  Mitsuo Takeda,et al.  3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift , 2009, Optics + Optoelectronics.

[50]  Mitsuo Takeda,et al.  Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited]. , 2013, Applied optics.

[51]  O. Katz,et al.  Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers , 2014, 1405.4826.

[52]  A. Mosk,et al.  Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.