Detecting the Birth of Supermassive Black Holes Formed from Heavy Seeds

In this white paper we explore the capabilities required to identify and study supermassive black holes formed from heavy seeds ($\mathrm{M_{\bullet}} \sim 10^4 - 10^6 \, \mathrm{M_{\odot}}$) in the early Universe. To obtain an unequivocal detection of heavy seeds we need to probe mass scales of $\sim 10^{5-6} \, \mathrm{M_{\odot}}$ at redshift $z \gtrsim 10$. From this theoretical perspective, we review the observational requirements and how they compare with planned/proposed instruments, in the infrared, X-ray and gravitational waves realms. In conclusion, detecting heavy black hole seeds at $z \gtrsim 10$ in the next decade will be challenging but, according to current theoretical models, feasible with upcoming/proposed facilities. Their detection will be fundamental to understand the early history of the Universe, as well as its evolution until now. Shedding light on the dawn of black holes will certainly be one of the key tasks that the astronomical community will focus on in the next decade.

[1]  K. Holley-Bockelmann,et al.  Disentangling nature from nurture: tracing the origin of seed black holes , 2019, 1904.09326.

[2]  W. Brandt,et al.  Electromagnetic Window into the Dawn of Black Holes , 2019, 1903.08579.

[3]  T. Downes,et al.  Formation of massive black holes in rapidly growing pre-galactic gas clouds , 2019, Nature.

[4]  S. Borgani,et al.  The seeds of supermassive black holes and the role of local radiation and metal spreading , 2018, Publications of the Astronomical Society of Australia.

[5]  R. Klessen,et al.  Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes , 2018, Publications of the Astronomical Society of Australia.

[6]  The Lynx Team The Lynx Mission Concept Study Interim Report. , 2018, 1809.09642.

[7]  Z. Haiman,et al.  Identifying Direct Collapse Black Hole Seeds through Their Small Host Galaxies , 2018, The Astrophysical Journal.

[8]  P. Natarajan,et al.  The observational signatures of supermassive black hole seeds , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  Z. Haiman,et al.  Massive black hole and Population III galaxy formation in overmassive dark-matter haloes with violent merger histories , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  M. Volonteri,et al.  Chasing the observational signatures of seed black holes at z > 7: candidate observability , 2018, 1801.08165.

[11]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[12]  R. Schneider,et al.  Chasing the observational signatures of seed black holes at z > 7: candidate statistics , 2017, 1711.11033.

[13]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 , 2019, The Astrophysical Journal.

[14]  M. Volonteri,et al.  High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays , 2017, 1704.00753.

[15]  A. Pallottini,et al.  The nature of the Lyman α emitter CR7: a persisting puzzle , 2017, 1702.04351.

[16]  M. Volonteri,et al.  Hyperaccreting black holes in galactic nuclei , 2016, 1609.07137.

[17]  E. Zackrisson,et al.  Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions , 2016, 1610.05312.

[18]  N. Yoshida,et al.  COSMOLOGICAL SIMULATIONS OF EARLY BLACK HOLE FORMATION: HALO MERGERS, TIDAL DISRUPTION, AND THE CONDITIONS FOR DIRECT COLLAPSE , 2016, 1603.08923.

[19]  A. Grazian,et al.  First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S , 2016, 1603.08522.

[20]  R. Schneider,et al.  Super-Eddington growth of the first black holes , 2016, 1603.00475.

[21]  Y. Dubois,et al.  On the number density of 'direct collapse' black hole seeds , 2016, 1601.00557.

[22]  J. Gair,et al.  Science with the space-based interferometer eLISA: Supermassive black hole binaries , 2015, 1511.05581.

[23]  Z. Haiman,et al.  Hyper-Eddington accretion flows on to massive black holes , 2015, 1511.02116.

[24]  O. Fèvre,et al.  The Case for a James Webb Space Telescope Extragalactic Key Project , 2015, 1512.04530.

[25]  D. Schaerer,et al.  The brightest Ly α emitter: Pop III or black hole? , 2015, 1506.07173.

[26]  M. Volonteri,et al.  Shining in the dark: the spectral evolution of the first black holes , 2015, 1506.05299.

[27]  M. Volonteri,et al.  The growth efficiency of high-redshift black holes , 2015, 1506.04750.

[28]  B. Mobasher,et al.  EVIDENCE FOR PopIII-LIKE STELLAR POPULATIONS IN THE MOST LUMINOUS Lyα EMITTERS AT THE EPOCH OF REIONIZATION: SPECTROSCOPIC CONFIRMATION , 2015, 1504.01734.

[29]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[30]  A. Ferrara,et al.  Simulating the growth of intermediate mass black holes , 2015, 1501.00989.

[31]  Z. Haiman,et al.  Direct collapse black hole formation from synchronized pairs of atomic cooling haloes , 2014, 1406.7020.

[32]  K. Hotokezaka,et al.  Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave , 2014, 1402.6672.

[33]  K. Schawinski,et al.  The Hot and Energetic Universe: The formation and growth of the earliest supermassive black holes , 2013, 1306.2325.

[34]  W. Schmidt,et al.  Black hole formation in the early Universe , 2013, 1304.0962.

[35]  J. Dunlop,et al.  Unravelling obese black holes in the first galaxies , 2013, 1302.6996.

[36]  Jillian Bellovary,et al.  Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.

[37]  M. Livio,et al.  Ubiquitous seeding of supermassive black holes by direct collapse , 2012, 1205.6464.

[38]  Z. Haiman The Formation of the First Massive Black Holes , 2012, 1203.6075.

[39]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[40]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[41]  Alberto Sesana,et al.  The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.

[42]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[43]  M. Rees,et al.  Rapid Growth of High-Redshift Black Holes , 2005, astro-ph/0506040.

[44]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[45]  Z. Haiman Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift , 2004, astro-ph/0404196.

[46]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[47]  N. Yoshida,et al.  Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.

[48]  A. Loeb,et al.  Formation of the First Supermassive Black Holes , 2002, astro-ph/0212400.

[49]  Z. Haiman,et al.  Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104 K , 2001, astro-ph/0108071.

[50]  Z. Haiman,et al.  What Is the Highest Plausible Redshift of Luminous Quasars? , 2000, astro-ph/0011529.

[51]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[52]  M. Rees,et al.  The formation of nuclei in newly formed galaxies and the evolution of the quasar population , 1993 .

[53]  M. Begelman Can a spherically accreting black hole radiate very near the Eddington limit , 1979 .

[54]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .