Some theoretical properties of an augmented lagrangian merit function

Sequential quadratic programming (SQP) methods for nonlinearly constrained optimization typically use of a merit function to enforce convergence from an arbitrary starting point. We define a smooth augmented Lagrangian merit function in which the Lagrange multiplier estimate is treated as a separate variable, and inequality constraints are handled by means of non-negative slack variables that included in the linesearch. Global convergence is proved of an SQP algorithm that uses merit function. It is also prove, that steps of unity are accepted in a neighborhood of the solution when this merit function is used in a suitable superlinearly convergent algorithm. Finally, a selection of numerical results is presented to illustrate the performance of the associated SQP method. 36 refs., 1 tab.

[1]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[2]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[3]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[4]  M. Hestenes Multiplier and gradient methods , 1969 .

[5]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[6]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[7]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[8]  Stephen M. Robinson,et al.  Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms , 1974, Math. Program..

[9]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[10]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[11]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[12]  M. H. Wright Numerical methods for nonlinearly constrained optimization , 1976 .

[13]  R. Tapia Diagonalized multiplier methods and quasi-Newton methods for constrained optimization , 1977 .

[14]  N. Maratos,et al.  Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .

[15]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[16]  L. Grippo,et al.  A New Class of Augmented Lagrangians in Nonlinear Programming , 1979 .

[17]  Olvi L. Mangasarian,et al.  Exact penalty functions in nonlinear programming , 1979, Math. Program..

[18]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[19]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[20]  R. M. Chamberlain,et al.  Algorithms for constrained minimization of smooth nonlinear functions , 1982 .

[21]  K. Schittkowski,et al.  On the Convergence of a Sequential Quadratic Programming Method with an Augmented Lagrangian Line Search Functions. , 1982 .

[22]  P. Boggs,et al.  On the Local Convergence of Quasi-Newton Methods for Constrained Optimization , 1982 .

[23]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[24]  C. Lemaréchal,et al.  The watchdog technique for forcing convergence in algorithms for constrained optimization , 1982 .

[25]  J. J. Moré,et al.  Newton's Method , 1982 .

[26]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[27]  Michael A. Saunders,et al.  User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .

[28]  P. Boggs,et al.  A family of descent functions for constrained optimization , 1984 .

[29]  Jonathan Goodman,et al.  Newton's method for constrained optimization , 1985, Math. Program..

[30]  Ya-Xiang Yuan,et al.  A recursive quadratic programming algorithm that uses differentiable exact penalty functions , 1986, Math. Program..

[31]  Paul T. Boggs,et al.  An efficient strategy for utilizing a merit function in nonlinear programming algorithms , 1986 .

[32]  M. Bartholomew-Biggs Recursive quadratic programming methods based on the augmented lagrangian , 1987 .