Modeling mineral/solution interactions: the thermodynamic and kinetic code KINDISP

Abstract The kinetic and thermodynamic geochemical model KINDISP (KINetics of DISsolution and Precipitation) describes the interactions between minerals and aqueous solutions, taking into account the irreversible dissolution of the reactants and the reversible precipitation of secondary products. The general laws included in the model are based on the theory of the Thermodynamics of Irreversible Processes. The water/rock interactions at low temperature are interpreted in a classical manner with the help of the Theory of the State of Transition and the chemistry of surface coordination. The mechanism which limits the rate of mineral dissolution or precipitation, the slowest one in successive irreversible reactions, is represented either by the aqueous molecular diffusion of an elementary entity (atom, molecule, etc.) or by the surface reaction in a broad sense. At each step of the calculation, KINDISP computes the reaction rates for each mineral reacting in the system and selects the slowest rate to represent the dissolution or precipitation law in this phase. The growth of secondary minerals is simulated in the domain of oversaturation (in nonequilibrium) after a nucleation step. The KINDISP model already has been used to simulate natural or induced water/rock interactions, not only at low temperatures, for example to study the effects of acid rain on surface weathering of a granite formation, estimate the formation time of a laterite layer, and the effects of pollution on the environment, but also at higher temperatures, for example to describe and account for diagenetic reactions in sedimentary basins for the purpose of exploiting the reservoirs as well as to study a system of hydrothermal reactions caused by heat storage or disposal of nuclear waste packages.

[1]  P. Dove Reply to Comment on “Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor” , 1990 .

[2]  B. Fritz,et al.  Modélisation cinétique et thermodynamique de l'altération: le modèle géochimique KINDIS , 1990 .

[3]  G. Furrer,et al.  The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides , 1986 .

[4]  R. Aller,et al.  The infinite dilution diffusion coefficient for A1(OH)4− at 25°C , 1983 .

[5]  J. Walther,et al.  A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates , 1988 .

[6]  G. R. Holdren,et al.  Dissolution kinetics of experimentally shocked silicate minerals , 1989 .

[7]  G. A. Parks Surface and interfacial free energies of quartz , 1984 .

[8]  T. Wolery,et al.  Calculation of equilibrium distributions of chemical species in aqueous solutions by means of monotone sequences , 1975 .

[9]  R. M. Krupka,et al.  Kinetic consequences of the principle of microscopic reversibility , 1966 .

[10]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[11]  Thomas A. Jones,et al.  Calculation of mass transfer in geochemical processes involving aqueous solutions , 1970 .

[12]  R. F. Strickland-Constable,et al.  Kinetics and Mechanism of Crystallization , 2018, Nucleation and Crystal Growth.

[13]  A. Lasaga,et al.  The treatment of multi-component diffusion and ion pairs in diagenetic fluxes , 1979 .

[14]  B. Wood,et al.  Mineral—Fluid Reaction Rates , 1986 .

[15]  Garrison Sposito,et al.  The surface chemistry of soils , 1984 .

[16]  A. Lasaga,et al.  Dissolution and precipitation kinetics of kaolinite at 80 degrees C and pH 3; the dependence on solution saturation state , 1991 .

[17]  C. L. Carnahan,et al.  COUPLING OF PRECIPITATION/DISSOLUTION REACTIONS TO MASS DIFFUSION , 1988 .

[18]  J. Schott,et al.  Multisite surface reaction versus transport control during the hydrolysis of a complex oxide , 1988 .

[19]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[20]  B. Boudreau The diffusion and telegraph equations in diagenetic modelling , 1989 .

[21]  Carl I. Steefel,et al.  Evolution of dissolution patterns : permeability change due to coupled flow and reaction , 1990 .

[22]  J. Bahr,et al.  Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions , 1987 .

[23]  A. Lasaga,et al.  The determination of SO42-, NaSO4-, and MgSO40 tracer diffusion coefficients and their application to diagenetic flux calculations , 1984 .

[24]  A. Lasaga Rate laws of chemical reactions , 1981 .

[25]  S. Brantley,et al.  The role of dislocations and surface morphology in calcite dissolution , 1992 .

[26]  H. Helgeson,et al.  Calculation of mass transfer among minerals and aqueous solutions as a function of time and surface area in geochemical processes. I. computational approach , 1983 .

[27]  W. Stumm Chemistry of the solid-water interface , 1992 .

[28]  L. C. Graton,et al.  Systematic Packing of Spheres: With Particular Relation to Porosity and Permeability , 1935, The Journal of Geology.

[29]  R. Stallard,et al.  Dislocation Etch Pits in Quartz , 1987 .

[30]  G. A. Parks CHAPTER 4. SURFACE ENERGY AND ADSORPTION AT MINERAL/WATER INTERFACES: AN INTRODUCTION , 1990 .

[31]  A. Lasaga Chemical kinetics of water‐rock interactions , 1984 .

[32]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar , 1984 .

[33]  V. S. Tripathi,et al.  A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components , 1989 .

[34]  R. Wollast,et al.  Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals , 1990 .

[35]  R. Garrels,et al.  Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals , 1989 .

[36]  G. Sposito,et al.  On the temperature dependence of mineral dissolution rates , 1992 .

[37]  Ronald C. Dykhuizen,et al.  An analysis of solute diffusion in rocks , 1989 .

[38]  Peter C. Lichtner,et al.  Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems , 1985 .

[39]  T. Pačes Steady-state kinetics and equilibrium between ground water and granitic rock , 1973 .

[40]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .

[41]  M. Velbel Influence of Surface Area, Surface Characteristics, and Solution Composition on Feldspar Weathering Rates , 1987 .

[42]  R. Freer Diffusion in silicate minerals and glasses: A data digest and guide to the literature , 1981 .

[43]  Robert A. Berner,et al.  Early Diagenesis: A Theoretical Approach , 1980 .

[44]  P. Lichtner The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium , 1988 .

[45]  R. Petrović Rate control in feldspar dissolution—II. The protective effect of precipitates , 1976 .

[46]  R. Berner,et al.  Dissolution kinetics of calcium carbonate in sea water; IV, Theory of calcite dissolution , 1974 .

[47]  R. Berner,et al.  X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering , 1983 .

[48]  R. Stallard,et al.  Dissolution at dislocation etch pits in quartz , 1986 .

[49]  B. Fritz Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques , 1981 .

[50]  Li Yuan-hui,et al.  Diffusion of ions in sea water and in deep-sea sediments , 1974 .

[51]  Chin-Fu Tsang,et al.  A summary of subsurface hydrological and hydrochemical models , 1991 .

[52]  W. M. Heston,et al.  The Solubility of Amorphous Silica in Water , 1954 .

[53]  P. Brady,et al.  Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C , 1989 .

[54]  C. Amrhein,et al.  Some factors affecting the dissolution kinetics of anorthite at 25°C , 1992 .

[55]  James W. Ball,et al.  A Comparison of Computerized Chemical Models for Equilibrium Calculations in Aqueous Systems , 1979 .

[56]  R. Berner,et al.  Dissolution Mechanisms of Pyroxenes and Olivines During Weathering , 1985 .

[57]  J. Rubin,et al.  Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions , 1983 .

[58]  Mark L. Brusseau,et al.  Modeling solute transport influenced by multiprocess nonequilibrium and transformation reactions , 1992 .

[59]  O. Söhnel Electrolyte crystal-aqueous solution interfacial tensions from crystallization data , 1982 .

[60]  Gour-Tsyh Yeh,et al.  A Model for Simulating Transport of Reactive Multispecies Components: Model Development and Demonstration , 1991 .

[61]  H. Helgeson,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions - I. Thermodynamic relations , 1968 .

[62]  H. Helgeson,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. III. Activated complexes and the pH-dependence of the rates of feldspar, pyroxene, wollastonite, and olivine hydrolysis , 1987 .

[63]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations , 1982 .

[64]  D. Langmuir Particle size effect on the reaction goethite = hematite + water , 1971 .

[65]  F. Manheim The diffusion of ions in unconsolidated sediments , 1970 .

[66]  H. Helgeson,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; IV, Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz, and nepheline , 1989 .

[67]  G. W. Fleming,et al.  PHRQINPT--An Interactive Computer Program for Constructing Input Data Sets to the Geochemical Simulation Program PHREEQE , 1983 .

[68]  T. Lai SELF-DIFFUSION OF EXCHANGEABLE CATIONS IN BENTONITE1 , 1960 .

[69]  R. Berner,et al.  Rate control in dissolution of alkali feldspars—I. Study of residual feldspar grains by X-ray photoelectron spectroscopy , 1976 .

[70]  E. Busenberg,et al.  The dissolution kinetics of feldspars at 25°C and 1 atm CO2 partial pressure , 1976 .

[71]  W. Gunter,et al.  Geochemical modeling of water-rock interactions using SOLMINEQ.88 , 1990 .

[72]  A. Yee,et al.  Aqueous oxidation-reduction kinetics associated with coupled electron-cation transfer from iron-containing silicates at 25°C , 1985 .

[73]  E. Oelkers,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Aqueous tracer diffusion coefficients of ions to 1000°C and 5 kb , 1988 .

[74]  K. R. Applin The diffusion of dissolved silica in dilute aqueous solution , 1987 .

[75]  A. Lasaga Atomic treatment of mineral-water surface reactions , 1990 .

[76]  R. Bassett,et al.  Chemical modeling of aqueous systems : an overview , 1990 .

[77]  Mary Peterson,et al.  Role of reactive-surface-area characterization in geochemical kinetic models , 1990 .

[78]  O. Söhnel,et al.  Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data , 1971 .

[79]  John C. Friedly,et al.  Solute transport with multiple equilibrium‐controlled or kinetically controlled chemical reactions , 1992 .

[80]  B. Jones,et al.  WATEQF-A fortran IV version of WATEQ, A computer program for calculating chemical equilibrium of natural waters , 1976 .

[81]  A. Nigrini Diffusion in rock alteration systems; I, Prediction of limiting equivalent ionic conductances at elevated temperatures , 1970 .

[82]  A. Yee,et al.  Near-Surface Alkali Diffusion into Glassy and Crystalline Silicates at 25°C to 100°C , 1987 .

[83]  William L. Bourcier,et al.  Current status of the EQ3/ 6 software package for geochemical modeling , 1990 .

[84]  S. Carroll,et al.  Kaolinite dissolution at 25 degrees , 60 degrees , and 80 degrees C , 1990 .

[85]  A. Coudrain-Ribstein Transport d'éléments et réactions géochimiques dans les aquifères , 1988 .

[86]  A. E. Nielsen Electrolyte crystal growth mechanisms , 1984 .

[87]  C. Steefel,et al.  A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening , 1990 .

[88]  Patrick V. Brady,et al.  Kinetics of quartz dissolution at low temperatures , 1990 .

[89]  A. E. Nielsen Mechanisms and Rate Laws in Electrolyte Crystal Growth from Aqueous Solution , 1987 .

[90]  G. A. Parks,et al.  Dissolution kinetics of magnesium silicates , 1972 .

[91]  J. D. Rimstidt,et al.  The kinetics of silica-water reactions , 1980 .

[92]  A. Lasaga Transition state theory , 1981 .

[93]  R. Garrels,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications , 1969 .

[94]  J. Dandurand,et al.  Determination of the surface energy of amorphous silica from solubility measurements in micropores , 1985 .

[95]  W. Casey Heterogeneous kinetics and diffusion boundary layers: The example of reaction in a fracture , 1987 .

[96]  A. Lasaga,et al.  Surface chemistry, etch pits and mineral-water reactions , 1986 .

[97]  B. Wehrli,et al.  The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals , 1988 .

[98]  S. Ben-Yaakov Diffusion of sea water ions—I. Diffusion of sea water into a dilute solution , 1972 .

[99]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[100]  G. H. Nancollas,et al.  CHAPTER 9. MECHANISMS OF GROWTH AND DISSOLUTION OF SPARINGLY SOLUBLE SALTS , 1990 .

[101]  David L. Parkhurst,et al.  Phreeqe--A Computer Program for Geochemical Calculations , 1980 .

[102]  A. Lasaga,et al.  The effect of dislocation density on the dissolution rate of quartz , 1990 .

[103]  B. Madé Modelisation thermodynamique et cinetique des reactions geochimiques dans les interactions eau-roche , 1991 .

[104]  Aaron A. Jennings,et al.  Multisolute mass transport with chemical interaction kinetics , 1985 .

[105]  P. Lichtner,et al.  Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes , 1989 .

[106]  R. E. Phillips,et al.  Ion Diffusion: II. Comparison of Apparent Self and Counter Diffusion Coefficients1 , 1964 .

[107]  A. Lasaga Role of surface speciation in the low-temperature dissolution of minerals , 1988, Nature.

[108]  G. A. Parks,et al.  THE ZERO POINT OF CHARGE OF OXIDES1 , 1962 .

[109]  W. Murphy Dislocations and feldspar dissolution , 1989 .

[110]  P. Dove,et al.  Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and 300°C: Effect of the nature of surface complexes and reaction affinity , 1994 .

[111]  A. Lasaga,et al.  Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3: The dependence on solution saturation state , 1992 .

[112]  K. Knauss,et al.  Dependence of albite dissolution kinetics on ph and time at 25°c and 70°c , 1986 .

[113]  H. Eyring The Activated Complex and the Absolute Rate of Chemical Reactions. , 1935 .

[114]  S. Brantley,et al.  Dissolution kinetics of strained calcite , 1989 .

[115]  R. Berner Kinetics of weathering and diagenesis , 1981 .

[116]  H. Nesbitt,et al.  Effects of aqueous cations on the dissolution of labradorite feldspar , 1991 .

[117]  B. Fritz,et al.  The composition of weathering solutions on granitic rocks: Comparison between field observations and water-rock interaction simulations based on thermodynamic and kinetic laws , 1990 .

[118]  Enrique Merino,et al.  Geochemical self-organization I; reaction-transport feedbacks and modeling approach , 1987 .

[119]  J. Schnoor Kinetics of chemical weathering : a comparison of laboratory and field weathering rates , 1990 .

[120]  G. R. Holdren,et al.  pH dependent changes in the rates and stoichiometry of dissolution of an alkali feldspar at room temperature , 1985 .

[121]  Enrique Merino,et al.  Geochemical Self-Organization II; the Reactive-Infiltration Instability , 1987, American Journal of Science.

[122]  R. K. Stoessell,et al.  A nonsteady state method for determining diffusion coefficients in porous media , 1975 .

[123]  R. Wollast Kinetics of the alteration of K-feldspar in buffered solutions at low temperature , 1967 .

[124]  R. Garrels,et al.  A chemical model for sea water at 25 degrees C and one atmosphere total pressure , 1962 .