Solid-liquid phase equilibrium and ternary phase diagrams of CL-20 in different solvent systems from 298.15 K to 313.15 K

[1]  S. Zhai,et al.  Determination and correlation of solubility and solution thermodynamics of saccharin in different pure solvents , 2019, The Journal of Chemical Thermodynamics.

[2]  Hongyuan Wei,et al.  Solution-mediated polymorphic transformation of CL-20: An approach to prepare purified form ε particles , 2018, Journal of Molecular Liquids.

[3]  Hongyuan Wei,et al.  Preparation, crystal structure and solution-mediated phase transformation of a novel solid-state form of CL-20 , 2018 .

[4]  H. Hao,et al.  Estimation and confirmation of the thermodynamic stability relationships of the enantiotropic polymorphs of glycolide , 2018 .

[5]  J. Gong,et al.  Thermodynamic and molecular investigation into the solubility, stability and self-assembly of gabapentin anhydrate and hydrate , 2017 .

[6]  H. Hao,et al.  Thermodynamic properties of enantiotropic polymorphs of glycolide , 2017 .

[7]  J. Gong,et al.  Solid–liquid phase equilibrium and thermodynamic analysis of prothioconazole in mono-solvents and binary solvents from 283.15 K to 313.15 K , 2017 .

[8]  Leping Dang,et al.  Measurement and correlation of solubility of ε-CL-20 in solvent mixtures of (chloroform + ethyl acetate) and (m-xylene + ethyl acetate) at temperatures from 278.15 K to 313.15 K , 2017 .

[9]  Q. Jiao,et al.  Correction to “Solubility Measurement and Correlation for ε-2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane in Five Organic Solvents at Temperatures between 283.15 and 333.15 K and Different Chloralkane + Ethyl Acetate Binary Solvents at Temperatures between 283.15 and 323.15 K” , 2017, Journal of Chemical & Engineering Data.

[10]  Leping Dang,et al.  Measurement and Correlation of the Solubility of ε-CL-20 in 12 Organic Solvents at Temperatures Ranging from 278.15 to 318.15 K , 2017 .

[11]  Hongzhen Li,et al.  Comparative Study of Experiments and Calculations on the Polymorphisms of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) Precipitated by Solvent/Antisolvent Method , 2016 .

[12]  S. Pang,et al.  The Crystal Structure and Morphology of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-Xylene Solvate: A Joint Experimental and Simulation Study , 2014, Molecules.

[13]  A. Be̅rziņš,et al.  On the Formation of Droperidol Solvates: Characterization of Structure and Properties , 2014 .

[14]  Hongyuan Wei,et al.  Solid–Liquid Equilibrium of Theophylline in Solvent Mixtures , 2014 .

[15]  Wenshuai Bai,et al.  Facile Method for the Prediction of Anhydrate/Hydrate Transformation Point , 2013 .

[16]  Y. Shu,et al.  Polymorphism in hexanitrohexaazaisowurtzitane crystallized from solution , 2012 .

[17]  Iain D. H. Oswald,et al.  Crystal engineering of energetic materials: Co-crystals of CL-20 , 2012 .

[18]  A. Schäfer,et al.  Polymorphism and versatile solvate formation of thiophanate-methyl , 2009 .

[19]  R. Ball,et al.  Water Activity-Mediated Control of Crystalline Phases of an Active Pharmaceutical Ingredient , 2007 .

[20]  J. Agrawal Some New High Energy Materials and their Formulations for Specialized Applications , 2005 .

[21]  U. R. Nair,et al.  Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review) , 2005 .

[22]  A K Sikder,et al.  A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. , 2004, Journal of hazardous materials.

[23]  Andrew P. Chafin,et al.  Synthesis of polyazapolycyclic caged polynitramines , 1998 .

[24]  D. M. Hoffman,et al.  CL‐20 performance exceeds that of HMX and its sensitivity is moderate , 1997 .

[25]  Jack E. Clarkson,et al.  The Solubility of ϵ‐CL‐20 in Selected Materials , 1994 .

[26]  C. L. Coon,et al.  The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part I , 1994 .

[27]  U. R. Nair,et al.  Closed-Vessel and Thermal Studies on Triple-Base Gun Propellants Containing CL-20 , 2010 .