Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity

Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized "slot" proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.

[1]  J. Zhu,et al.  Postnatal synaptic potentiation: Delivery of GluR4-containing AMPA receptors by spontaneous activity , 2000, Nature Neuroscience.

[2]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[3]  Joseph E LeDoux,et al.  Postsynaptic Receptor Trafficking Underlying a Form of Associative Learning , 2005, Science.

[4]  R. Petralia,et al.  Light and electron immunocytochemical localization of AMPA‐selective glutamate receptors in the rat brain , 1992, The Journal of comparative neurology.

[5]  R. Huganir,et al.  Requirement of AMPA Receptor GluR2 Phosphorylation for Cerebellar Long-Term Depression , 2003, Science.

[6]  R. Huganir,et al.  Interaction of the N-Ethylmaleimide–Sensitive Factor with AMPA Receptors , 1998, Neuron.

[7]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[8]  Mu-ming Poo,et al.  Reversal and consolidation of activity-induced synaptic modifications , 2004, Trends in Neurosciences.

[9]  J. Kao,et al.  Long-term potentiation of exogenous glutamate responses at single dendritic spines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Huganir,et al.  Differential Regulation of AMPA Receptor Subunit Trafficking by Palmitoylation of Two Distinct Sites , 2005, Neuron.

[11]  K. Svoboda,et al.  Experience Strengthening Transmission by Driving AMPA Receptors into Synapses , 2003, Science.

[12]  R. Malinow,et al.  APP Processing and Synaptic Function , 2003, Neuron.

[13]  R. Huganir,et al.  Glutamate Receptor Subunit 2 Serine 880 Phosphorylation Modulates Synaptic Transmission and Mediates Plasticity in CA1 Pyramidal Cells , 2003, The Journal of Neuroscience.

[14]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[15]  Hillel Adesnik,et al.  Photoinactivation of Native AMPA Receptors Reveals Their Real-Time Trafficking , 2005, Neuron.

[16]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[17]  R. Huganir,et al.  MAPK cascade signalling and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[18]  M. Sheng,et al.  Subunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons , 2004, Neuron.

[19]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[20]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[21]  J. Zhu,et al.  Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons , 2004, The Journal of Neuroscience.

[22]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[23]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[24]  Yu Tian Wang,et al.  Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD , 2002, Neuron.

[25]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[26]  Mikyoung Park,et al.  Recycling Endosomes Supply AMPA Receptors for LTP , 2004, Science.

[27]  J. David Sweatt,et al.  A Requirement for the Mitogen-activated Protein Kinase Cascade in Hippocampal Long Term Potentiation* , 1997, The Journal of Biological Chemistry.

[28]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[29]  J. Zhu,et al.  Rap2-JNK Removes Synaptic AMPA Receptors during Depotentiation , 2005, Neuron.

[30]  D. Linden,et al.  Long-term synaptic depression in the mammalian brain , 1994, Neuron.

[31]  R. Huganir,et al.  N-ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Roberto Malinow,et al.  AMPA receptor trafficking and long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  P. Osten,et al.  The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. , 1998, Neuron.

[34]  Sweatt Jd,et al.  A Requirement for the Mitogen-activated Protein Kinase Cascade in Hippocampal Long Term Potentiation , 1997 .

[35]  J. Zhu,et al.  State-dependent Ras signaling and AMPA receptor trafficking. , 2005, Genes & development.

[36]  西宗 敦史 NSF binding to GluR2 regulates synaptic transmission , 2000 .

[37]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[38]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[39]  B. McNaughton,et al.  Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Yu Zhang,et al.  Synaptic Transmission and Plasticity in the Absence of AMPA Glutamate Receptor GluR2 and GluR3 , 2003, Neuron.

[41]  M. H. Cobb,et al.  Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3–CA1 synapses , 2000, Nature Neuroscience.

[42]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[43]  M. Ehlers,et al.  Secretory trafficking in neuronal dendrites , 2004, Nature Cell Biology.

[44]  J. Esteban,et al.  NMDA Receptor-Dependent Activation of the Small GTPase Rab5 Drives the Removal of Synaptic AMPA Receptors during Hippocampal LTD , 2005, Neuron.

[45]  L. Garey,et al.  A light- and electron-microscopic study of GluR4-positive cells in cerebral cortex, subcortical white matter and corpus callosum of neonatal, immature and adult rats , 1996, Experimental Brain Research.

[46]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[47]  R. Nicoll,et al.  Bidirectional Synaptic Plasticity Regulated by Phosphorylation of Stargazin-like TARPs , 2005, Neuron.

[48]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[49]  Roberto Malinow,et al.  Glutamatergic Plasticity by Synaptic Delivery of GluR-Blong-Containing AMPA Receptors , 2003, Neuron.

[50]  P. Osten,et al.  The AMPA Receptor GluR2 C Terminus Can Mediate a Reversible, ATP-Dependent Interaction with NSF and α- and β-SNAPs , 1998, Neuron.

[51]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[52]  Roberto Malinow,et al.  PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity , 2003, Nature Neuroscience.

[53]  H. Murray,et al.  A role for COX-2 and p38 mitogen activated protein kinase in long-term depression in the rat dentate gyrus in vitro , 2003, Neuropharmacology.