Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction

We derive and analyze a model for implicit Large Eddy Simulation (LES) of compressible flows that is applicable to a broad range of Mach numbers and particularly efficient for LES of shock-turbulence interaction. Following a holistic modeling philosophy, physically sound turbulence modeling and numerical modeling of unresolved subgrid scales (SGS) are fully merged, in a manner quite different from that of traditional implicit LES approaches. The implicit subgrid model is designed in such a way that asymptotic consistency with incompressible turbulence theory is maintained in the low Mach number limit. Compressibility effects are properly accounted for by a novel numerical flux function, which can capture strong shock waves in supersonic flows and also ensures an accurate representation of smooth waves and turbulence without excessive numerical dissipation. Simulations of shock-tube problems, Noh's three-dimensional implosion problem, large-scale forced and decaying three-dimensional homogeneous isotropic turbulence, supersonic turbulent boundary layer flows, and a Mach = 2.88 compression-expansion ramp flow demonstrate the good performance of the SGS model; across this range of flows, predictions are in excellent agreement with theory, direct numerical simulations, and experimental reference data. Results for implicit LES of canonical shock-turbulence interaction are compared with results of explicit LES using the dynamic Smagorinsky model. The analysis shows that details of the numerical method used for shock capturing clearly outweigh the effect of different turbulence modeling strategies in explicit and implicit LES. The implicit LES model recovers the ideal 2nd-order grid convergence of shock-capturing errors that has been predicted using Rapid Distortion Theory. The dynamic Smagorinsky model in conjunction with a hybrid method that combines sixth-order central differences with a seventh-order weighted essentially non-oscillatory scheme yields turbulence statistics that are very similar to the implicit LES results. However, while the explicit LES requires a tailored high-order low-dissipative numerical method that applies numerical dissipation only in shock normal direction, no such ad hoc adjustments are necessary with the proposed implicit LES method.

[1]  R. Friedrich,et al.  DNS of a M = 2 Shock Interacting with Isotropic Turbulence , 1994 .

[2]  B. Kosović,et al.  Subgrid-scale modeling for large-eddy simulations of compressible turbulence , 2002 .

[3]  P. Sagaut,et al.  Large Eddy Simulation for Compressible Flows , 2009 .

[4]  Nikolaus A. Adams,et al.  A conservative immersed interface method for Large-Eddy Simulation of incompressible flows , 2010, J. Comput. Phys..

[5]  J. R. Ristorcelli,et al.  CONSISTENT INITIAL CONDITIONS FOR THE DNS OF COMPRESSIBLE TURBULENCE , 1996 .

[6]  L. Margolin,et al.  A rationale for implicit turbulence modelling , 2001 .

[7]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[8]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[9]  Sanjiva K. Lele,et al.  Direct numerical simulations of canonical shock/turbulence interaction , 2008, Proceeding of Sixth International Symposium on Turbulence and Shear Flow Phenomena.

[10]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[11]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[12]  Bram van Leer,et al.  Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes , 2003 .

[13]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[14]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[15]  Nikolaus A. Adams,et al.  IMPLICIT LARGE EDDY SIMULATION OF A SUPERSONIC TURBULENT BOUNDARY LAYER OVER A COMPRESSION-EXPANSION RAMP , 2013, Proceeding of Seventh International Symposium on Turbulence and Shear Flow Phenomena.

[16]  B. Geurts Inverse modeling for large-eddy simulation , 1997 .

[17]  Suresh Menon,et al.  Studies of shock/turbulent shear layer interaction using Large-Eddy Simulation , 2010 .

[18]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[19]  C. D. Pruett,et al.  Temporal large-eddy simulation: theory and implementation , 2008 .

[20]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[21]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[22]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[23]  Parviz Moin,et al.  Suitability of artificial bulk viscosity for large-eddy simulation of turbulent flows with shocks , 2009, J. Comput. Phys..

[24]  Christian Breitsamter,et al.  Wall-modelled implicit large-eddy Simulation of the RA16SC1 highlift configuration , 2013 .

[25]  H. Ribner,et al.  Convection of a pattern of vorticity through a shock wave , 1952 .

[26]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[27]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[28]  Riley,et al.  Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. , 1987, Physical review letters.

[29]  V. Rusanov,et al.  The calculation of the interaction of non-stationary shock waves and obstacles , 1962 .

[30]  Ben Thornber,et al.  Accuracy of high‐order density‐based compressible methods in low Mach vortical flows , 2014 .

[31]  F. Grinstein,et al.  Large Eddy simulation of high-Reynolds-number free and wall-bounded flows , 2002 .

[32]  C. Breitsamter,et al.  Integrated Experimental-Numerical Analysis of High-Agility Aircraft Wake Vortex Evolution , 2011 .

[33]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[34]  B. Geurts,et al.  Database-analysis of errors in Large-Eddy Simulation , 2003 .

[35]  Andrew W. Cook,et al.  Short Note: Hyperviscosity for shock-turbulence interactions , 2005 .

[36]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[37]  Bernardus J. Geurts,et al.  A priori tests of large eddy simulation of the compressible plane mixing layer , 1995 .

[38]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[39]  P. Sagaut,et al.  Large-Eddy Simulation of Shock/Homogeneous Turbulence Interaction , 2002 .

[40]  N. A. Adams,et al.  On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface , 2014, Journal of Fluid Mechanics.

[41]  N. Adams,et al.  Implicit subgrid-scale modeling by adaptive deconvolution , 2004 .

[42]  Matteo Bernardini,et al.  Characterization of coherent vortical structures in a supersonic turbulent boundary layer , 2008, Journal of Fluid Mechanics.

[43]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[44]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[45]  Meng-Sing Liou,et al.  Ten Years in the Making: AUSM-Family , 2001 .

[46]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[47]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[48]  Albert Edward Honein,et al.  Numerical aspects of compressible turbulence simulations , 2005 .

[49]  Nikolaus A. Adams,et al.  LARGE-EDDY SIMULATION OF PASSIVE SHOCK-WAVE/BOUNDARY-LAYER INTERACTION CONTROL , 2014, Proceeding of Eighth International Symposium on Turbulence and Shear Flow Phenomena.

[50]  A. W. Vreman,et al.  Dynamic inverse modeling and its testing in large-eddy simulations of the mixing layer , 1999 .

[51]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[52]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[53]  Sergio Pirozzoli,et al.  On the spectral properties of shock-capturing schemes , 2006, J. Comput. Phys..

[54]  N. Adams,et al.  Wall modeling for implicit large-eddy simulation and immersed-interface methods , 2014 .

[55]  Joseph Mathew,et al.  A NEW APPROACH TO LES BASED ON EXPLICIT FILTERING , 2006, Proceeding of Fourth International Symposium on Turbulence and Shear Flow Phenomena.

[56]  J. Larsson Effect of Shock-Capturing Errors on Turbulence Statistics , 2010 .

[57]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[58]  P. Woodward,et al.  Inertial range structures in decaying compressible turbulent flows , 1998 .

[59]  F. Nicoud,et al.  Large-Eddy Simulation of the Shock/Turbulence Interaction , 1999 .

[60]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[61]  Parviz Moin,et al.  Interaction of isotropic turbulence with shock waves: effect of shock strength , 1997, Journal of Fluid Mechanics.

[62]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[63]  Nikolaus A. Adams,et al.  Implicit LES applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence , 2008 .

[64]  Christer Fureby,et al.  From canonical to complex flows: Recent progress on monotonically integrated LES , 2004, Computing in Science & Engineering.

[65]  L. Kovasznay Turbulence in Supersonic Flow , 1953 .

[66]  Neil D. Sandham,et al.  Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble , 2009 .

[67]  A. Gosman,et al.  A comparative study of subgrid scale models in homogeneous isotropic turbulence , 1997 .

[68]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[69]  Xiangyu Y. Hu,et al.  Quantification of initial-data uncertainty on a shock-accelerated gas cylinder , 2014 .

[70]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[71]  Nikolaus A. Adams,et al.  Large-eddy simulation of turbulent cavitating flow in a micro channel , 2014 .

[72]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[73]  Eric Serre,et al.  A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities , 2007, J. Comput. Phys..

[74]  Nikolaus A. Adams,et al.  Numerical investigation of collapsing cavity arrays , 2012 .

[75]  Nikolaus A. Adams,et al.  Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing , 2007 .

[76]  Keith W. Bedford,et al.  IMPROVED AVERAGING METHOD FOR TURBULENT FLOW SIMULATION. PART I: THEORETICAL DEVELOPMENT AND APPLICATION TO BURGERS' TRANSPORT EQUATION , 1986 .

[77]  B. Geurts,et al.  Discretization error dominance over subgrid terms in large eddy simulation of compressible shear layers in 2D , 1994 .

[78]  Large-Eddy simulation of turbulent trans- and supercritical mixing , 2013 .

[79]  Christophe Bailly,et al.  Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering , 2006 .

[80]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[81]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[82]  Matteo Bernardini,et al.  Turbulence in supersonic boundary layers at moderate Reynolds number , 2011, Journal of Fluid Mechanics.

[83]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[84]  Sanjiva K. Lele,et al.  Reynolds- and Mach-number effects in canonical shock–turbulence interaction , 2013, Journal of Fluid Mechanics.

[85]  U. Schumann Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli , 1975 .

[86]  Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation , 2013 .

[87]  J. F. Quaatz,et al.  LARGE-EDDY SIMULATION OF A PSEUDO-SHOCK SYSTEM IN A LAVAL NOZZLE , 2014, Proceeding of Eighth International Symposium on Turbulence and Shear Flow Phenomena.

[88]  Nikolaus A. Adams,et al.  On implicit subgrid-scale modeling in wall-bounded flows , 2007 .

[89]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[90]  M. Fruman,et al.  Direct numerical simulation of a breaking inertia–gravity wave , 2013, Journal of Fluid Mechanics.

[91]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[92]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[93]  Nikolaus A. Adams,et al.  Efficient Implementation of Nonlinear Deconvolution Methods for Implicit Large-Eddy Simulation , 2007 .

[94]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[95]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[96]  Nikolaus A. Adams,et al.  Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions , 2008 .

[97]  M. Mihatsch,et al.  Implicit Large Eddy Simulation of Cavitation in Micro Channel Flows , 2011 .

[98]  Sanjiva K. Lele,et al.  On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets , 2005 .

[99]  Nikolaus A. Adams,et al.  Direct modelling of subgrid scales of turbulence in large eddy simulations , 2002 .

[100]  Spectral eddy viscosity of stratified turbulence , 2014, Journal of Fluid Mechanics.

[101]  Parviz Moin,et al.  Direct numerical simulation of isotropic turbulence interacting with a weak shock wave , 1993, Journal of Fluid Mechanics.

[102]  Xiangyu Y. Hu,et al.  On the Kolmogorov inertial subrange developing from Richtmyer-Meshkov instability , 2013 .

[103]  C. Fureby,et al.  Mathematical and Physical Constraints on Large-Eddy Simulations , 1997 .

[104]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[105]  Robert D. Moser,et al.  Finite-volume optimal large-eddy simulation of isotropic turbulence , 2004 .

[106]  P. Lax,et al.  Systems of conservation laws , 1960 .

[107]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[108]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[109]  S. Hickel,et al.  DIRECT AND LARGE EDDY SIMULATION OF STRATIFIED TURBULENCE , 2012, Proceeding of Seventh International Symposium on Turbulence and Shear Flow Phenomena.

[110]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .

[111]  Nikolaus A. Adams,et al.  Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction , 2012, Journal of Fluid Mechanics.

[112]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[113]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[114]  Nikolaus A. Adams,et al.  Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics , 2012 .

[115]  J. Larsson,et al.  An adaptive local deconvolution model for compressible turbulence , 2008 .