Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method

Abstract Complex hydraulic fractures are often reported in layered formations as the existence of a geological discontinuity. A seepage-stress-damage coupled finite element model was built to study the hydraulic fracture propagation behavior of the X5 sandstone and shale layered reservoir in the western Sichuan basin. The cohesive zone method (CZM) based on damage mechanics was used to simulate hydraulic fracture initiation and propagation. The influence of geologic parameters and fracturing execution parameters on hydraulic fracture morphology were studied. The results show that hydraulic fractures are mainly penetrating the interface and extending along the interface to generate a branched fracture, while others are forming normal bi-wing fractures.

[1]  Hu Zhao,et al.  Cementing failure of the casing-cement-rock interfaces during hydraulic fracturing , 2014 .

[2]  J. Geertsma,et al.  A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures , 1969 .

[3]  Brandon C. Ames,et al.  Impact of Partially Cemented and Non-persistent Natural Fractures on Hydraulic Fracture Propagation , 2016, Rock Mechanics and Rock Engineering.

[4]  Kamy Sepehrnoori,et al.  Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized cohesive layer: Stimulation controlling factors , 2015 .

[5]  A. Peirce,et al.  An implicit level set method for modeling hydraulically driven fractures , 2008 .

[6]  A. Bunger,et al.  Cohesive Zone Finite Element-Based Modeling of Hydraulic Fractures , 2009 .

[7]  M. K. Rahman,et al.  Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells , 2002 .

[8]  C. A. Tang,et al.  Coupled analysis of flow, stress and damage (FSD) in rock failure , 2002 .

[9]  Neal Borden Nagel,et al.  Gas Shale Hydraulic Fracturing: A Numerical Evaluation of the Effect of Geomechanical Parameters , 2012 .

[10]  Alan D. Black,et al.  Laboratory Hydraulic Fracturing Test on a Rock With Artificial Discontinuities , 2006 .

[11]  A. Pouya,et al.  A damage-plasticity model for cohesive fractures , 2015 .

[12]  Guang Dong,et al.  Perforation optimization of hydraulic fracturing of oil and gas well , 2013 .

[13]  M. Sheng,et al.  Hydraulic Fracturing Model Based on Nonlinear Fracture Mechanics: Theory and Simulation , 2012 .

[14]  Milind Deo,et al.  Modeling Fluid Invasion and Hydraulic Fracture Propagation in Naturally Fractured Formations: A Three-Dimensional Approach , 2010 .

[15]  Md. Mofazzal Hossain,et al.  Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing , 2008 .

[16]  N. Nagel,et al.  Stress Shadowing and Microseismic Events: A Numerical Evaluation , 2011 .

[17]  H.A.M. van Eekelen,et al.  Hydraulic Fracture Geometry: Fracture Containment in Layered Formations , 1982 .

[18]  T. L. Blanton,et al.  An Experimental Study of Interaction Between Hydraulically Induced and Pre-Existing Fractures , 1982 .

[19]  W. Medlin,et al.  Laboratory experiments in fracture propagation , 1984 .

[20]  Jon E. Olson,et al.  Predicting fracture swarms — the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock , 2004, Geological Society, London, Special Publications.

[21]  R. G. Jeffrey,et al.  Hydraulic Fracturing Experiments in the Great Northern Coal Seam , 1994 .

[22]  Chen Zhixi,et al.  Determination of rock fracture toughness and its relationship with acoustic velocity , 1997 .

[23]  R. P. Nordgren,et al.  Propagation of a Vertical Hydraulic Fracture , 1972 .

[24]  Xiangting Su,et al.  Finite Element Modelling of Complex 3D Static and Dynamic Crack Propagation by Embedding Cohesive Elements in Abaqus , 2010 .

[25]  L. Xiong,et al.  Porosity evolution in tight gas sands of the Upper Triassic Xujiahe Formation, western Sichuan basin, China , 2014 .

[26]  Jianchun Guo,et al.  Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method , 2015 .

[27]  W. Medlin,et al.  Fracture penetration through an interface , 1983 .

[28]  Jianchun Guo,et al.  Evaluation of fracability and screening of perforation interval for tight sandstone gas reservoir in western Sichuan Basin , 2015 .

[29]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[30]  Zuorong Chen Finite element modelling of viscosity-dominated hydraulic fractures , 2012 .

[31]  Li Ma,et al.  Perforating cluster space optimization method of horizontal well multi-stage fracturing in extremely thick unconventional gas reservoir , 2015 .

[32]  M. E. Hanson,et al.  Effects of Various Parameters on Hydraulic Fracturing Geometry , 1981 .

[33]  D. E. Cormack,et al.  Calculation of vertical fracture containment in layered formations , 1987 .

[34]  Norman R. Warpinski,et al.  Influence of Geologic Discontinuities on Hydraulic Fracture Propagation (includes associated papers 17011 and 17074 ) , 1984 .

[35]  G. D. Anderson Effects of Friction on Hydraulic Fracture Growth Near Unbonded Interfaces in Rocks , 1981 .

[36]  T. K. Perkins,et al.  Widths of Hydraulic Fractures , 1961 .

[37]  J. Olson,et al.  A Cohesive Model for Modeling Hydraulic Fractures in Naturally Fractured Formations , 2015 .

[38]  Jennifer L. Miskimins,et al.  Laboratory Hydraulic Fracturing Tests on Small Homogeneous and Laminated Blocks , 2008 .

[39]  T. Fries,et al.  Development of a Numerical Tool for EGS-Layout Calculations Based on 3D XFEM Fracture Propagation Simulations and Laboratory Experiments on Large Rock Samples , 2015 .

[40]  Lawrence W. Teufel,et al.  Hydraulic-fracture propagation in layered rock: experimental studies of fracture containment , 1984 .

[41]  F. W. Jessen,et al.  The Effects of Existing Fractures in Rocks on the Extension of Hydraulic Fractures , 1963 .