Three decades of nanopore sequencing

[1]  David A. Matthews,et al.  Real-time, portable genome sequencing for Ebola surveillance , 2016, Nature.

[2]  Robert J. Fischer,et al.  Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool , 2016, Emerging infectious diseases.

[3]  David A. Eccles,et al.  MinION Analysis and Reference Consortium: Phase 1 data release and analysis , 2015, F1000Research.

[4]  Yunfan Fan,et al.  Nanopore sequencing detects structural variants in cancer , 2015, bioRxiv.

[5]  Tamas Szalay,et al.  De novo sequencing and variant calling with nanopores using PoreSeq , 2015, Nature Biotechnology.

[6]  B. Graveley,et al.  Determining exon connectivity in complex mRNAs by nanopore sequencing , 2015, Genome Biology.

[7]  Aaron T. Kuan,et al.  Electrical pulse fabrication of graphene nanopores in electrolyte solution. , 2015, Applied physics letters.

[8]  Stefan Engelen,et al.  Genome assembly using Nanopore-guided long and error-free DNA reads , 2015, BMC Genomics.

[9]  P. Wincker,et al.  Genome assembly using Nanopore-guided long and error-free DNA reads , 2015, BMC Genomics.

[10]  N. Loman,et al.  A complete bacterial genome assembled de novo using only nanopore sequencing data , 2015, Nature Methods.

[11]  Benedict Paten,et al.  Improved data analysis for the MinION nanopore sequencer , 2015, Nature Methods.

[12]  Aaron R Quinlan,et al.  Erratum: A reference bacterial genome dataset generated on the MinIONTM portable single-molecule nanopore sequencer , 2015, GigaScience.

[13]  P. Ashton,et al.  MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island , 2014, Nature Biotechnology.

[14]  M. Akeson,et al.  Nanopores Discriminate among Five C5-Cytosine Variants in DNA , 2014, Journal of the American Chemical Society.

[15]  Aaron R. Quinlan,et al.  A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer , 2014, bioRxiv.

[16]  S. Howorka,et al.  Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG , 2014, Nature.

[17]  Jay Shendure,et al.  Decoding long nanopore sequencing reads of natural DNA , 2014, Nature Biotechnology.

[18]  Mark Akeson,et al.  Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands , 2013, Proceedings of the National Academy of Sciences.

[19]  I. Derrington,et al.  Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA , 2013, Proceedings of the National Academy of Sciences.

[20]  D. Branton,et al.  Molecule-hugging graphene nanopores , 2013, Proceedings of the National Academy of Sciences.

[21]  A. Aksimentiev,et al.  Molecular dynamics study of MspA arginine mutants predicts slow DNA translocations and ion current blockades indicative of DNA sequence. , 2012, ACS nano.

[22]  Jessica C. Ebert,et al.  Accurate whole genome sequencing and haplotyping from10-20 human cells , 2012, Nature.

[23]  Aleksei Aksimentiev,et al.  DNA base-calling from a nanopore using a Viterbi algorithm. , 2012, Biophysical journal.

[24]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[25]  M. Niederweis,et al.  Nucleotide Discrimination with DNA Immobilized in the MspA Nanopore , 2011, PloS one.

[26]  M. Ghadiri,et al.  Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. , 2010, Angewandte Chemie.

[27]  K. Lieberman,et al.  Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. , 2010, Journal of the American Chemical Society.

[28]  Mark Akeson,et al.  Replication of Individual DNA Molecules under Electronic Control Using a Protein Nanopore , 2010, Nature nanotechnology.

[29]  David Stoddart,et al.  Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. , 2010, Nano letters.

[30]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[31]  H. Bayley,et al.  Multiple base-recognition sites in a biological nanopore: two heads are better than one. , 2010, Angewandte Chemie.

[32]  David Stoddart,et al.  Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore , 2009, Proceedings of the National Academy of Sciences.

[33]  M. Niederweis,et al.  Single-molecule DNA detection with an engineered MspA protein nanopore , 2008, Proceedings of the National Academy of Sciences.

[34]  Scott L Cockroft,et al.  A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. , 2008, Journal of the American Chemical Society.

[35]  Marc Gershow,et al.  Recapturing and trapping single molecules with a solid-state nanopore. , 2007, Nature nanotechnology.

[36]  D. Deamer,et al.  Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. , 2007, Nature nanotechnology.

[37]  Mark Akeson,et al.  Single-molecule analysis of DNA-protein complexes using nanopores , 2007, Nature Methods.

[38]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel , 2005 .

[39]  H. Bayley,et al.  Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. , 2005, Angewandte Chemie.

[40]  D. Branton,et al.  DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Georg E. Schulz,et al.  The Structure of a Mycobacterial Outer-Membrane Channel , 2004, Science.

[42]  D. Branton,et al.  Voltage-driven DNA translocations through a nanopore. , 2001, Physical review letters.

[43]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[45]  D. Bonn,et al.  Two heads are better than one , 1999, Nature Methods.

[46]  R. Benz,et al.  Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis , 1999, Molecular microbiology.

[47]  Sergey M. Bezrukov,et al.  Dynamics and Free Energy of Polymers Partitioning into a Nanoscale Pore , 1996 .

[48]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[49]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Benz,et al.  Permeability of the cell wall of Mycobacterium smegmatis , 1994, Molecular microbiology.

[51]  H. Bayley,et al.  A pore-forming protein with a metal-actuated switch. , 1994, Protein engineering.

[52]  S. Bezrukov,et al.  Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. , 1993, Physical review letters.

[53]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[54]  M. Troll,et al.  Determination of RNA orientation during translocation through a biological nanopore. , 2006, Biophysical journal.

[55]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Gianfranco Menestrina,et al.  Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations , 2005, The Journal of Membrane Biology.