暂无分享,去创建一个
Ibrahim Jubran | Murad Tukan | Alaa Maalouf | Dan Feldman | Dan Feldman | Ibrahim Jubran | Alaa Maalouf | M. Tukan
[1] Philippe Flajolet,et al. Birthday Paradox, Coupon Collectors, Caching Algorithms and Self-Organizing Search , 1992, Discret. Appl. Math..
[2] Ibrahim Jubran,et al. Introduction to Coresets: Accurate Coresets , 2019, ArXiv.
[3] Jeff M. Phillips,et al. Improved Practical Matrix Sketching with Guarantees , 2014, IEEE Transactions on Knowledge and Data Engineering.
[4] Stanislav Minsker. Geometric median and robust estimation in Banach spaces , 2013, 1308.1334.
[5] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[6] Travis E. Oliphant,et al. Guide to NumPy , 2015 .
[7] R. J. Webster,et al. Carathéodory's Theorem , 1972, Canadian Mathematical Bulletin.
[8] Dan Feldman,et al. Coresets for Vector Summarization with Applications to Network Graphs , 2017, ICML.
[9] Xinjia Chen,et al. A New Generalization of Chebyshev Inequality for Random Vectors , 2007, ArXiv.
[10] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[11] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[12] Tamir Tassa,et al. More Constraints, Smaller Coresets: Constrained Matrix Approximation of Sparse Big Data , 2015, KDD.
[13] Charu C. Aggarwal,et al. Neural Networks and Deep Learning , 2018, Springer International Publishing.
[14] Artem Barger,et al. k-Means for Streaming and Distributed Big Sparse Data , 2015, SDM.
[15] Richard Peng,et al. Uniform Sampling for Matrix Approximation , 2014, ITCS.
[16] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[17] Dimitris Papailiopoulos,et al. Provable deterministic leverage score sampling , 2014, KDD.
[18] Moses Charikar,et al. Finding frequent items in data streams , 2002, Theor. Comput. Sci..
[19] Vladimir Vapnik,et al. Principles of Risk Minimization for Learning Theory , 1991, NIPS.
[20] C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .
[21] S. Muthukrishnan,et al. Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..
[22] Shang-Hua Teng,et al. Smoothed analysis: an attempt to explain the behavior of algorithms in practice , 2009, CACM.
[23] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[24] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[25] Jeff M. Phillips,et al. Near-Optimal Coresets of Kernel Density Estimates , 2018, Discrete & Computational Geometry.
[26] Sariel Har-Peled. Geometric Approximation Algorithms , 2011 .
[27] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[28] David P. Woodruff,et al. Fast approximation of matrix coherence and statistical leverage , 2011, ICML.
[29] Xin Xiao,et al. On the Sensitivity of Shape Fitting Problems , 2012, FSTTCS.
[30] L. Schulman,et al. Universal ε-approximators for integrals , 2010, SODA '10.
[31] Dan Feldman,et al. Dimensionality Reduction of Massive Sparse Datasets Using Coresets , 2015, NIPS.
[32] Pierre-Olivier Amblard,et al. Determinantal Point Processes for Coresets , 2018, J. Mach. Learn. Res..
[33] Daniel M. Kane,et al. A Derandomized Sparse Johnson-Lindenstrauss Transform , 2010, Electron. Colloquium Comput. Complex..
[34] Jeff M. Phillips,et al. Coresets and Sketches , 2016, ArXiv.
[35] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[36] S. Bergman. The kernel function and conformal mapping , 1950 .
[37] Christopher Ré,et al. Weighted SGD for ℓp Regression with Randomized Preconditioning , 2016, SODA.
[38] Michael B. Cohen,et al. Input Sparsity Time Low-rank Approximation via Ridge Leverage Score Sampling , 2015, SODA.
[39] Leslie G. Valiant,et al. A theory of the learnable , 1984, STOC '84.
[40] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[41] François Kawala,et al. Prédictions d'activité dans les réseaux sociaux en ligne , 2013 .
[42] A. Juditsky,et al. Large Deviations of Vector-valued Martingales in 2-Smooth Normed Spaces , 2008, 0809.0813.
[43] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[44] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[45] Jirí Matousek,et al. Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.
[46] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[47] Vladimir Braverman,et al. New Frameworks for Offline and Streaming Coreset Constructions , 2016, ArXiv.
[48] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[49] Daniel B. Work,et al. Using coarse GPS data to quantify city-scale transportation system resilience to extreme events , 2015, ArXiv.
[50] Fred L. Drake,et al. Python 3 Reference Manual , 2009 .
[51] Jon Louis Bentley,et al. Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.
[52] David P. Woodruff,et al. Optimal Approximate Matrix Product in Terms of Stable Rank , 2015, ICALP.
[53] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[54] Andreas Krause,et al. Scalable k -Means Clustering via Lightweight Coresets , 2017, KDD.
[55] Richard Peng,et al. Lp Row Sampling by Lewis Weights , 2015, STOC.
[56] Alaa Maalouf,et al. Tight Sensitivity Bounds For Smaller Coresets , 2019, KDD.