Beyond Ecological Interface Design: Lessons From Concerns and Misconceptions

The ecological interface design (EID) paradigm was introduced in the process control domain 25 years ago by Kim Vicente and Jens Rasmussen, as a way to help operators cope with system complexity and events unanticipated in the design of automated control systems. Since that time, this perspective has sparked interest in other safety-critical sociotechnical domains where humans cooperate with computerized systems to ensure safe and efficient system behavior. Many of our own, but also other explorations have, however, resulted in several usability concerns and misconceptions about the EID perspective as a viable design approach. This paper discusses some of these concerns and misconceptions, where the final goal is to get past the EID label and to consider the general lessons relative to the demands and opportunities that advanced information technologies offer and complex systems require. This paper concludes with a preliminary outlook for the future of EID, where it is anticipated that the adjective “ecological” will become increasingly redundant, as the focus on supporting “productive thinking” becomes the dominant paradigm for engineering representations.

[1]  Terry Winograd,et al.  Understanding computers and cognition - a new foundation for design , 1987 .

[2]  Bobbie D. Seppelt,et al.  Making adaptive cruise control (ACC) limits visible , 2007, Int. J. Hum. Comput. Stud..

[3]  Morten Lind,et al.  Plant modelling for human supervisory control , 1999 .

[4]  Kevin B. Bennett,et al.  Human Interaction with an "Intelligent" Machine , 1987, Int. J. Man Mach. Stud..

[5]  Kim J. Vicente,et al.  Coping with Human Errors through System Design: Implications for Ecological Interface Design , 1989, Int. J. Man Mach. Stud..

[6]  Kim J. Vicente,et al.  Ecological interface design and sensor noise , 2013, Int. J. Hum. Comput. Stud..

[7]  三嶋 博之 The theory of affordances , 2008 .

[8]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[9]  Erik Hollnagel,et al.  Cognitive Systems Engineering: New wine in new bottles , 1999, Int. J. Hum. Comput. Stud..

[10]  David Woods,et al.  Resilience Engineering: Concepts and Precepts , 2006 .

[11]  A. J. Grimes Normal Accidents: Living with High Risk Technologies , 1985 .

[12]  René van Paassen,et al.  Ecological Interface Design of a Tactical Airborne Separation Assistance Tool , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[13]  K. J. Vicente,et al.  The Ecology of Human-Machine Systems II: Mediating 'Direct Perception' in Complex Work Domains , 1990 .

[14]  Kim J. Vicente,et al.  Ecological Interface Design: Progress and Challenges , 2002, Hum. Factors.

[15]  Catherine M. Burns,et al.  Evaluation of Ecological Interface Design for Nuclear Process Control: Situation Awareness Effects , 2008, Hum. Factors.

[16]  Charles E. Billings,et al.  Aviation Automation: The Search for A Human-centered Approach , 1996 .

[17]  Robert Evans,et al.  A Maneuvering-Board Approach to Path Planning with Moving Obstacles , 1989, IJCAI.

[18]  L. P. Goodstein,et al.  Discriminative Display Support for Process Operators , 1981 .

[19]  Joost Ellerbroek,et al.  Airborne Conflict Resolution in Three Dimensions , 2013 .

[20]  Kim J. Vicente,et al.  Designing Functional Visualizations for Aircraft Systems Status Displays , 1999 .

[21]  C. Wickens,et al.  Situation Awareness, Mental Workload, and Trust in Automation: Viable, Empirically Supported Cognitive Engineering Constructs , 2008 .

[22]  Matthijs H. J. Amelink,et al.  Ecological Automation Design, Extending Work Domain Analysis , 2010 .

[23]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[24]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[25]  René van Paassen,et al.  Design of an airborne three-dimensional separation assistance display , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[26]  Kevin B. Bennett,et al.  Evaluation of an Ecological Interface Design for Military Command and Control , 2012 .

[27]  Kim J. Vicente,et al.  Evaluation of a Rankine Cycle Display for Nuclear Power Plant Monitoring and Diagnosis , 1996, Hum. Factors.

[28]  Jeffrey M. Bradshaw,et al.  Ten Challenges for Making Automation a "Team Player" in Joint Human-Agent Activity , 2004, IEEE Intell. Syst..

[29]  Olivier St-Cyr Impact of Sensor Noise Magnitude on Emergent Features of Ecological Interface Design , 2006 .

[30]  Penelope M. Sanderson,et al.  Work domain analysis and sensors I: principles and simple example , 2002 .

[31]  David Woods,et al.  1. How to make automated systems team players , 2002 .

[32]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[33]  René van Paassen,et al.  Experimental Evaluation of a Coplanar Airborne Separation Display , 2013, IEEE Trans. Hum. Mach. Syst..

[34]  G. A. Jamieson,et al.  Ecological Interface Design for Petrochemical Process Control: An Empirical Assessment , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[35]  James D. Hollan,et al.  Direct Manipulation Interfaces , 1985, Hum. Comput. Interact..

[36]  Catherine M. Burns,et al.  Work Domain Analysis for Intentional Systems , 1999 .

[37]  C. Borst,et al.  Ecological Interface Design for Terrain Awareness , 2006 .

[38]  Ali Zolghadri,et al.  Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities , 2012 .

[39]  Kim J. Vicente,et al.  CRITIQUE AND RESPONSE: Response to Maddox Critique , 1996, Hum. Factors.

[40]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[41]  Julien Marzat,et al.  Model-based fault diagnosis for aerospace systems: a survey , 2012 .

[42]  A. Lambregts Integrated system design for flight and propulsion control using total energy principles , 1983 .

[43]  Penelope M. Sanderson,et al.  Minimal Instrumentation May Compromise Failure Diagnosis With an Ecological Interface , 2004, Hum. Factors.

[44]  Kim J. Vicente,et al.  Ecological interface design: theoretical foundations , 1992, IEEE Trans. Syst. Man Cybern..

[45]  Herbert H. Clark,et al.  Grounding in communication , 1991, Perspectives on socially shared cognition.

[46]  René van Paassen,et al.  Experimental evaluation of a co-planar airborne separation display , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[47]  Erik Hollnagel,et al.  Joint Cognitive Systems: Patterns in Cognitive Systems Engineering , 2006 .

[48]  D. Woods,et al.  Automation Surprises , 2001 .

[49]  Michael E. Maddox CRITIQUE AND RESPONSE: Critique of “A Longitudinal Study of the Effects of Ecological Interface Design on Skill Acquisition” by Christoffersen, Hunter, and Vicente , 1996, Hum. Factors.

[50]  K. J. Vicente Representation aiding for problem solving in process control systems , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.

[51]  A. Lambregts Vertical flight path and speed control autopilot design using total energy principles , 1983 .

[52]  Clark Borst,et al.  Risk Perception in Ecological Information Systems , 2013 .

[53]  E. Brunswik Perception and the Representative Design of Psychological Experiments , 1957 .

[54]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[55]  Kim J. Vicente,et al.  A Longitudinal Study of the Effects of Ecological Interface Design on Skill Acquisition , 1996, Hum. Factors.

[56]  Rolf Isermann,et al.  Supervision, fault-detection and fault-diagnosis methods — An introduction , 1997 .

[57]  Kim J. Vicente,et al.  Designing Effective Human-Automation-Plant Interfaces: A Control-Theoretic Perspective , 2005, Hum. Factors.

[58]  Jens Rasmussen,et al.  Risk management in a dynamic society: a modelling problem , 1997 .

[59]  L. Bainbridge Ironies of Automation , 1982 .

[60]  René van Paassen,et al.  Design of a Coplanar Airborne Separation Display , 2013, IEEE Transactions on Human-Machine Systems.

[61]  Catherine M. Burns,et al.  Ecological Interface Design , 2004 .

[62]  Debasish Ghose,et al.  Obstacle avoidance in a dynamic environment: a collision cone approach , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[63]  John M. Flach,et al.  Interfaces to medical information systems: Supporting evidenced based practice , 2014, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[64]  Max Mulder,et al.  Design and Simulator Evaluation of an Ecological Synthetic Vision Display , 2010 .

[65]  Michael J. Barnes,et al.  Supervisory Control of Unmanned Vehicles , 2010 .

[66]  Max Mulder,et al.  Ecological Approach to Support Pilot Terrain Awareness After Total Engine Failure , 2007 .

[67]  Max Mulder,et al.  Theoretical Foundations for a Total Energy-Based Perspective Flight-Path Display , 2005 .

[68]  Kevin B. Bennett,et al.  Display and Interface Design: Subtle Science, Exact Art , 2011 .

[69]  K. J. Vicente,et al.  Cognitive Work Analysis: Toward Safe, Productive, and Healthy Computer-Based Work , 1999 .