Efficiency of parallel genetic algorithm for solving N-queens problem on multicomputer platform

The paper investigates the efficiency of parallel genetic algorithm for solving N-queens problem on a multicomputer platform. The proposed parallel computational model of the genetic algorithm is based on a parallel algorithmic paradigm of synchronous iterations. Dynamic migration of randomly selected chromosomes in a bidirectional circular model is utilized. The algorithm is implemented using both flat (pure MPI) and hybrid (MPI+OpenMP) programming models. The target parallel multicomputer platform is a cluster of SMPs. Performance profiling and scalability analyses have been made in respect of both the workload (board size) and the size of the parallel system.

[1]  Michael de la Maza The Fifth International Conference on Genetic Algorithms , 1994, AI Mag..

[2]  Marin Golub,et al.  Solving n-Queen problem using global parallel genetic algorithm , 2003, The IEEE Region 8 EUROCON 2003. Computer as a Tool..

[3]  Edward P. K. Tsang,et al.  A Glimpse of Constraint Satisfaction , 1999, Artificial Intelligence Review.

[4]  Enrique Alba,et al.  A survey of parallel distributed genetic algorithms , 1999, Complex..

[5]  Erick Cantú-Paz,et al.  Migration Policies, Selection Pressure, and Parallel Evolutionary Algorithms , 2001, J. Heuristics.

[6]  Erick Cantu-paz Designing scalable multi-population parallel genetic algorithms , 1998 .

[7]  Erick Cantú-Paz,et al.  A Summary of Research on Parallel Genetic Algorithms , 1995 .

[8]  André Nunes De Souza,et al.  A modified Hopfield model for solving the N-Queens problem , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[9]  Arthur T. Benjamin,et al.  Across the board: The mathematics of chessboard problems , 2005 .

[10]  Erick Cantú-Paz Designing efficient master-slave parallel genetic algorithms , 1997 .

[11]  Igor Rivin,et al.  A Dynamic Programming Solution to the n-Queens Problem , 1992, Inf. Process. Lett..

[12]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[13]  Anthony A. Maciejewski,et al.  A Study of Five Parallel Approaches to a Genetic Algorithm for the Traveling Salesman Problem , 2005, Intell. Autom. Soft Comput..

[14]  Josef Hynek Genetic Algorithms for the N Queens Problem , 2008, GEM.

[15]  Jacek Mandziuk,et al.  A neural network designed to solve the N-Queens Problem , 2004, Biological Cybernetics.

[16]  P. Borovska,et al.  Ieee International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications Migration Policies for Island Genetic Models on Multicomputer Platform , 2022 .

[17]  A. E. Eiben,et al.  GA-easy and GA-hard Constraint Satisfaction Problems , 1995, Constraint Processing, Selected Papers.

[18]  Abdollah Homaifar,et al.  The N-queens problem and genetic algorithms , 1992, Proceedings IEEE Southeastcon '92.

[19]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[20]  Dejan S. Milojicic,et al.  Migration policies , 1999 .

[21]  Mehmed Kantardzic,et al.  Data Mining: Concepts, Models, Methods, and Algorithms , 2002 .

[22]  Ron Shonkwiler,et al.  Parallel Genetic Algorithms , 1993, ICGA.

[23]  Enrique Alba,et al.  Analyzing synchronous and asynchronous parallel distributed genetic algorithms , 2001, Future Gener. Comput. Syst..

[24]  Kelly D. Crawford,et al.  Solving the n-queens problem using genetic algorithms , 1992, SAC '92.

[25]  A. Eiben Evolutionary algorithms and constraint satisfaction: definitions, survey, methodology, and research directions , 2001 .

[26]  Riccardo Poli,et al.  Parallel genetic algorithm taxonomy , 1999, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.99TH8410).

[27]  M. Golub,et al.  Comparison of Heuristic Algorithms for the N-Queen Problem , 2007, 2007 29th International Conference on Information Technology Interfaces.

[28]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .