Determinantal Processes and Independence
暂无分享,去创建一个
[1] Yuval Peres,et al. Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process , 2003, math/0310297.
[2] A. Khare. Fractional statistics and quantum theory , 2005 .
[3] K. Johansson. Determinantal Processes with Number Variance Saturation , 2004, math/0404133.
[4] T. Shirai,et al. Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .
[5] T. Shirai,et al. Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties , 2003 .
[6] N. O'Connell,et al. PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .
[7] R. Lyons. Determinantal probability measures , 2002, math/0204325.
[8] J. Steif,et al. Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination , 2002, math/0204324.
[9] Russell Lyons,et al. Uniform spanning forests , 2001 .
[10] A. Soshnikov. Gaussian limit for determinantal random point fields , 2000, math/0006037.
[11] A. Soshnikov. Determinantal random point fields , 2000, math/0002099.
[12] G. Olshanski,et al. Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.
[13] Eric M. Rains,et al. High powers of random elements of compact Lie groups , 1997 .
[14] Lebowitz,et al. Gaussian fluctuation in random matrices. , 1994, Physical review letters.
[15] R. Pemantle,et al. Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.
[16] Zhi-Ming Ma,et al. Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .
[17] Eric Kostlan,et al. On the spectra of Gaussian matrices , 1992 .
[18] R. Milne,et al. A class of infinitely divisible mul-tivariate negative binomial distributions , 1987 .
[19] Robert C. Griffiths,et al. Characterization of infinitely divisible multivariate gamma distributions , 1984 .
[20] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. I , 1975 .
[21] A. Lenard,et al. States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .
[22] O. Macchi. The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.
[23] A. Lenard,et al. Correlation functions and the uniqueness of the state in classical statistical mechanics , 1973 .
[24] M. R. Dubman,et al. Theory of time-varying spectral analysis and complex Wishart matrix processes , 1969 .
[25] S. Zienau. Quantum Physics , 1969, Nature.
[26] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[27] D. Cox. Some Statistical Methods Connected with Series of Events , 1955 .