Acoustic Wave Microsensors PART II

Acoustic wave microsensors are a versatile class of sensor with many applications. Although originally regarded as mass detectors, these sensors can also measure a variety of other physical properties at the sensor's surface. This article focuses on sensing involving sensitivity to viscoelastic thin-film properties and polymer transitions, response mechanisms of polymer-coated vapor sensors, acoustoelectric and dielectric effects, and factors influencing sensor behavior in the liquid phase. It begins with a discussion of viscoelastic thin films. 73 refs., 7 figs., 1 tab.

[1]  R. A. McGill,et al.  Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients , 1988 .

[2]  Stephen J. Martin,et al.  Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading , 1991 .

[3]  J. Grate,et al.  Frequency-independent and frequency-dependent polymer transitions observed on flexural plate wave ultrasonic sensors , 1992 .

[4]  J. Mccallum,et al.  Piezoelectric devices for mass and chemical measurements: an update. A review , 1989 .

[5]  A. Mierzwiński,et al.  The application of piezoelectric detectors for investigations of environmental pollution. , 1989, Environmental pollution.

[6]  A. W. Barendsz,et al.  Metallo)phthalocyanines as chemical interfaces on a surface acoustic wave gas sensor for nitrogen dioxide , 1988 .

[7]  Ingemar Lundström,et al.  Quartz crystal gas monitor with a gas concentrating stage , 1984 .

[8]  J. F. Alder,et al.  Surface acoustic wave sensors for atmospheric gas monitoring. A review , 1989 .

[9]  Adrian C. Stevenson,et al.  A Love plate biosensor utilising a polymer layer , 1992 .

[10]  Susan L. Rose-Pehrsson,et al.  Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface acoustic wave sensors, automated sample preconcentration, and pattern recognition , 1993 .

[11]  W. Duncan-Hewitt,et al.  Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure , 1992 .

[12]  A. Ricco,et al.  Acoustoelectric interaction of plate modes with solutions , 1988 .

[13]  F. Josse,et al.  LiNbO/sub 3/ acoustic plate mode sensor for dilute ionic solutions , 1990 .

[14]  Stephen J. Martin,et al.  Thin metal film characterization and chemical sensors: monitoring electronic conductivity, mass loading and mechanical properties with surface acoustic wave devices , 1991 .

[15]  Richard M. White,et al.  Fluid loading of a Lamb‐wave sensor , 1988 .

[16]  A. Ricco,et al.  Acoustic wave viscosity sensor , 1987 .

[17]  Antonio J. Ricco,et al.  Surface acoustic wave gas sensor based on film conductivity changes , 1985 .

[18]  Raymond E. Dessy,et al.  Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description , 1979 .

[19]  Stephen J. Martin,et al.  Materials Characterization Using Surface Acoustic Wave Devices , 1991 .

[20]  Stephen J. Martin,et al.  Effect of surface roughness on the response of thickness-shear mode resonators in liquids , 1993 .

[21]  H. Muramatsu,et al.  Quartz crystal detector for microrheological study and its application to phase transition phenomena of Langmuir-Blodgett films , 1992 .

[22]  M. Ward,et al.  In Situ Interfacial Mass Detection with Piezoelectric Transducers , 1990, Science.

[23]  Antonio J. Ricco,et al.  Characterization of SH acoustic plate mode liquid sensors , 1989 .

[24]  G. Bastiaans,et al.  Piezoelectric crystals as detectors in liquid chromatography , 1980 .

[25]  J. Grate,et al.  Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition , 1986 .

[26]  C. L. Arthur,et al.  Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry. , 1986, Analytical chemistry.

[27]  M. Thompson,et al.  Interfacial properties and the response of the thickness-shear-mode acoustic wave sensor in liquids , 1993 .

[28]  G. C. Frye,et al.  Surface acoustic wave response to changes in viscoelastic film properties , 1990 .

[29]  Jay W. Grate,et al.  Surface acoustic wave vapor sensors based on resonator devices , 1991 .

[30]  Kenneth R. Beebe,et al.  Multicomponent analysis using an array of piezoelectric crystal sensors , 1987 .

[31]  Günter Kovacs,et al.  Theoretical comparison of sensitivities of acoustic shear wave modes for (bio)chemical sensing in liquids , 1992 .

[32]  B. Kowalski,et al.  Chemical piezoelectric sensor and sensor array characterization , 1986 .

[33]  Takamichi Nakamoto,et al.  Odour-sensing system using a quartz-resonator sensor array and neural-network pattern recognition , 1989 .

[34]  K. Kallury,et al.  Mediation of acoustic energy transmission from acoustic wave sensors to the liquid phase by interfacial viscosity , 1991 .

[35]  Arlin L. Kipling,et al.  Network analysis method applied to liquid-phase acoustic wave sensors , 1990 .

[36]  L. Piché,et al.  Ultrasonic characterization of polymer viscoelasticity. Application to polystyrene , 1989 .

[37]  Rolf Schumacher,et al.  The Quartz Microbalance: A Novel Approach to the In‐Situ Investigation of Interfacial Phenomena at the Solid/Liquid Junction [New Analytical Methods (40)] , 1990 .

[38]  J. Grate,et al.  Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays , 1991 .

[39]  Michael J. Thompson,et al.  Thickness-shear-mode acoustic wave sensors in the liquid phase. A review , 1991 .

[40]  H. F. Tiersten,et al.  A perturbation analysis of the attenuation and dispersion of surface waves , 1977 .

[41]  H. Wohltjen Mechanism of Operation and Design Considerations for Surface Acoustic Wave Device Vapor Sensors. , 1984 .

[42]  P. Jurs,et al.  Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices. , 1988, Analytical chemistry.

[43]  Y. Okahata,et al.  Application of a quartz-crystal microbalance for detection of phase transitions in liquid crystals and lipid multibilayers , 1989 .

[44]  Michael D. Ward,et al.  Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance , 1992 .

[45]  Michael Thompson,et al.  Interdigital capacitance and surface acoustic wave sensors , 1993 .

[46]  D. Buttry,et al.  Electrochemical applications of the quartz crystal microbalance , 1989 .

[47]  W. H. King Piezoelectric Sorption Detector. , 1964 .

[48]  R. A. McGill,et al.  The predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic wave vapor sensors , 1992 .