Swept-source OCT angiography of macular telangiectasia type 2.

BACKGROUND AND OBJECTIVE To evaluate the central macular microvascular network in patients with macular telangiectasia type 2 (MacTel2) using optical coherence tomography (OCT)-based microangiography (OMAG). PATIENTS AND METHODS Prospective, observational study of patients with MacTel2 evaluated using a swept-source OCT (SS-OCT) prototype. OMAG was performed using a 3 mm × 3 mm central foveal raster scan. The algorithm segmented the retina into three layers. Microvascular distribution was depicted as en face images, and qualitative information was compared to fluorescein angiography (FA) images. RESULTS OMAG detected abnormal microvasculature in all MacTel2 eyes, predominantly in the middle retinal layers with neovascularization in the outer retina. These vessels correlated well with the FA alterations. The abnormal temporal, juxtafoveal microvasculature in MacTel2 became apparent as the disease progressed and in later stages tended to extend circumferentially, with anastomotic vessels temporally. CONCLUSION OMAG provided detailed, depth- resolved information about the perifoveal macular microvasculature in MacTel2. In most cases, images were better using OMAG than FA. The OMAG images demonstrated that most of the leakage seen on FA appeared to arise from the abnormal perifoveal microvasculature in the middle retinal layer.

[1]  J. Gass,et al.  Idiopathic juxtafoveolar retinal telangiectasis. , 1982, Archives of ophthalmology.

[2]  B. Blodi,et al.  Idiopathic juxtafoveolar retinal telangiectasis , 1993 .

[3]  J. Zubeldia,et al.  Fluorescein-induced allergic reaction. , 1998, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[4]  V. Gabel,et al.  Optical coherence tomography findings in idiopathic juxtafoveal retinal telangiectasis , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[5]  H. Koizumi,et al.  Morphologic features of group 2A idiopathic juxtafoveolar retinal telangiectasis in three-dimensional optical coherence tomography. , 2006, American journal of ophthalmology.

[6]  L. Yannuzzi,et al.  Idiopathic Macular Telangiectasia , 2006, Retina.

[7]  Alain Gaudric,et al.  Optical coherence tomography in group 2A idiopathic juxtafoveolar retinal telangiectasis. , 2006, Archives of ophthalmology.

[8]  Wolfgang Drexler,et al.  Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh-resolution optical coherence tomography. , 2006, Ophthalmology.

[9]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[10]  R. Lira,et al.  Adverse reactions of fluorescein angiography: a prospective study. , 2007, Arquivos brasileiros de oftalmologia.

[11]  Ruikang K. Wang,et al.  Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. , 2007, Optics express.

[12]  B. J. Klevering,et al.  Analysis of visual pigment by fundus autofluorescence. , 2008, Experimental eye research.

[13]  Denise Cunningham,et al.  Fundus autofluorescence in type 2 idiopathic macular telangiectasia: correlation with optical coherence tomography and microperimetry. , 2009, American journal of ophthalmology.

[14]  G. Rubin,et al.  STRUCTURAL AND FUNCTIONAL CHANGES OVER TIME IN MacTel PATIENTS , 2009, Retina.

[15]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[16]  Tunde Peto,et al.  Baseline Characteristics of Participants in the Natural History Study of Macular Telangiectasia (MacTel) MacTel Project Report No. 2 , 2010, Ophthalmic epidemiology.

[17]  Ruikang K. Wang,et al.  Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Steffen Schmitz-Valckenberg,et al.  Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2. , 2010, Ophthalmology.

[19]  Ronald Klein,et al.  The prevalence of macular telangiectasia type 2 in the Beaver Dam eye study. , 2010, American journal of ophthalmology.

[20]  R. Guymer,et al.  THE PREVALENCE ESTIMATES OF MACULAR TELANGIECTASIA TYPE 2: The Melbourne Collaborative Cohort Study , 2010, Retina.

[21]  L. Yannuzzi The retinal atlas , 2010 .

[22]  Ruikang K. Wang,et al.  High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. , 2010, Journal of biomedical optics.

[23]  A. Tsujikawa,et al.  High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy. , 2011, Investigative ophthalmology & visual science.

[24]  Daniel M. Schwartz,et al.  In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography , 2011, Biomedical optics express.

[25]  David Williams,et al.  Retinal crystals in type 2 idiopathic macular telangiectasia. , 2010, Ophthalmology.

[26]  S. M. R. Motaghiannezam,et al.  Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization. , 2012, Journal of biomedical optics.

[27]  Robert J Zawadzki,et al.  Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[28]  Johannes F de Boer,et al.  Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. , 2012, Optics express.

[29]  Catherine Egan,et al.  The IS/OS junction layer in the natural history of type 2 idiopathic macular telangiectasia. , 2012, Investigative ophthalmology & visual science.

[30]  Ruikang K. Wang,et al.  Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects , 2012, Journal of biomedical optics.

[31]  Catherine Egan,et al.  "En face" OCT imaging of the IS/OS junction line in type 2 idiopathic macular telangiectasia. , 2012, Investigative ophthalmology & visual science.

[32]  James G. Fujimoto,et al.  Parafoveal Retinal Vascular Response to Pattern Visual Stimulation Assessed with OCT Angiography , 2013, PloS one.

[33]  Emily Y. Chew,et al.  Macular telangiectasia type 2 , 2013, Progress in Retinal and Eye Research.

[34]  Robert J Zawadzki,et al.  Staging of macular telangiectasia: power-Doppler optical coherence tomography and macular pigment optical density. , 2013, Investigative ophthalmology & visual science.

[35]  Daniel M. Schwartz,et al.  Optical imaging of the chorioretinal vasculature in the living human eye , 2013, Proceedings of the National Academy of Sciences.

[36]  S. Sivaprasad,et al.  Agreement between Time-Domain and Spectral-Domain Optical Coherence Tomography in the Assessment of Macular Thickness in Patients with Idiopathic Macular Telangiectasia Type 2 , 2013, Ophthalmologica.

[37]  J. Duker,et al.  Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography , 2013, PloS one.

[38]  M. Gillies,et al.  THE RELATIONSHIP BETWEEN INNER RETINAL CAVITATION, PHOTORECEPTOR DISRUPTION, AND THE INTEGRITY OF THE OUTER LIMITING MEMBRANE IN MACULAR TELANGIECTASIA TYPE 2 , 2013, Retina.

[39]  T. Peto,et al.  ASSOCIATIONS BETWEEN AUTOFLUORESCENCE ABNORMALITIES AND VISUAL ACUITY IN IDIOPATHIC MACULAR TELANGIECTASIA TYPE 2: MacTel Project Report Number 5 , 2014, Retina.

[40]  Martin F. Kraus,et al.  Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. , 2014, Ophthalmology.

[41]  Robert J Zawadzki,et al.  Phase-variance optical coherence tomography: a technique for noninvasive angiography. , 2014, Ophthalmology.

[42]  Martin F. Kraus,et al.  Optical coherence tomography angiography of optic disc perfusion in glaucoma. , 2014, Ophthalmology.