Efficient computation of the extreme solutions of X + A*X-1A = Q and X - A*X-1A = Q

We propose a new quadratically convergent algorithm, having a low computational cost per step and good numerical stability properties, which allows the simultaneous approximation of the extreme solutions of the matrix equations X + A*X -1 A = Q and X - A*X -1 A = Q. The algorithm is based on the cyclic reduction method.

[1]  Mohamed A. Ramadan,et al.  On the existence of a positive definite solution of the matrix equation , 2001, Int. J. Comput. Math..

[2]  Dario Bini,et al.  Computations with infinite Toeplitz matrices and polynomials , 2002 .

[3]  Beatrice Meini,et al.  New convergence results on functional iteration techniques for the numerical solution of M/G/1 type Markov chains , 1997 .

[4]  Beatrice Meini,et al.  Effective Methods for Solving Banded Toeplitz Systems , 1999, SIAM J. Matrix Anal. Appl..

[5]  Paolo Tilli,et al.  Asymptotic spectral distribution of Toeplitz-related matrices , 1999 .

[6]  Latouche Guy,et al.  A note on two matrices occurring in the solution of quasi-birth-and-death processes , 1987 .

[7]  S. Serra,et al.  Spectral and Computational Analysis of Block Toeplitz Matrices Having Nonnegative Definite Matrix-Valued Generating Functions , 1999 .

[8]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[9]  Stefano Serra,et al.  Asymptotic Results on the Spectra of Block Toeplitz Preconditioned Matrices , 1999 .

[10]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[11]  J. Engwerda On the existence of a positive definite solution of the matrix equation X + A , 1993 .

[12]  Chun-Hua Guo,et al.  Newton's Method for Discrete Algebraic Riccati Equations when the Closed-Loop Matrix Has Eigenvalues on the Unit Circle , 1999, SIAM J. Matrix Anal. Appl..

[13]  Vaidyanathan Ramaswami,et al.  A logarithmic reduction algorithm for quasi-birth-death processes , 1993, Journal of Applied Probability.

[14]  Kuan-Yue Wang,et al.  A Matrix Equation , 1991, Econometric Theory.

[15]  Harry Dym,et al.  Hermitian Block Toeplitz Matrices, Orthogonal Polynomials, Reproducing Kernel Pontryagin Spaces, Interpolation and Extension , 1988 .

[16]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[17]  T. D. Morley,et al.  Positive solutions to X = A−BX-1 B∗ , 1990 .

[18]  Paolo Tilli,et al.  Asymptotic Spectra of Hermitian Block Toeplitz Matrices and Preconditioning Results , 2000, SIAM J. Matrix Anal. Appl..

[19]  Gene H. Golub,et al.  Matrix computations , 1983 .

[20]  Xingzhi Zhan,et al.  On the matrix equation X + ATX−1A = I , 1996 .

[21]  Tom Burr,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 2001, Technometrics.

[22]  Paolo Tilli,et al.  Block Toeplitz matrices and preconditioning , 1996 .

[23]  B. Levy,et al.  Hermitian solutions of the equation X = Q + NX−1N∗ , 1996 .

[24]  Chun-Hua Guo,et al.  Iterative solution of two matrix equations , 1999, Math. Comput..

[25]  Beatrice Meini,et al.  On the Solution of a Nonlinear Matrix Equation Arising in Queueing Problems , 1996, SIAM J. Matrix Anal. Appl..

[26]  Xingzhi Zhan,et al.  Computing the Extremal Positive Definite Solutions of a Matrix Equation , 1996, SIAM J. Sci. Comput..

[27]  A. Ran,et al.  Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A*X-1A = Q , 1993 .

[28]  Ronald L. Smith Some interlacing properties of the Schur complement of a Hermitian matrix , 1992 .

[29]  K. Sohraby,et al.  An invariant subspace approach in m/g/l and g/m/l type markov chains , 1997 .

[30]  G. W. Stewart,et al.  Numerical methods for M/G/1 type queues , 1995 .

[31]  Beatrice Meini,et al.  Improved cyclic reduction for solving queueing problems , 1997, Numerical Algorithms.

[32]  Beatrice Meini,et al.  Factorization of analytic functions by means of Koenig's theorem and Toeplitz computations , 1998, Numerische Mathematik.