Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation

[1]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[2]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[3]  R. Desimone,et al.  Responses of Neurons in Inferior Temporal Cortex during Memory- Guided Visual Search , 1998 .

[4]  Leslie G. Ungerleider,et al.  Sustained Activity in the Medial Wall during Working Memory Delays , 1998, The Journal of Neuroscience.

[5]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[6]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[7]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[8]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  Karl J. Friston,et al.  The functional anatomy of attention to visual motion. A functional MRI study. , 1998, Brain : a journal of neurology.

[10]  N. Kanwisher,et al.  Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. , 1998, Journal of neurophysiology.

[11]  A. Mikami,et al.  Neuronal activity in the frontal eye field of the monkey is modulated while attention is focused on to a stimulus in the peripheral visual field, irrespective of eye movement , 1997, Neuroscience Research.

[12]  E. DeYoe,et al.  Graded effects of spatial and featural attention on human area MT and associated motion processing areas. , 1997, Journal of neurophysiology.

[13]  J V Haxby,et al.  Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. , 1997, Journal of neurophysiology.

[14]  G A Orban,et al.  Attention to One or Two Features in Left or Right Visual Field: A Positron Emission Tomography Study , 1997, The Journal of Neuroscience.

[15]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[16]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[17]  Richard S. J. Frackowiak,et al.  Two Modulatory Effects of Attention That Mediate Object Categorization in Human Cortex , 1997, Science.

[18]  Karl J. Friston,et al.  Combining Spatial Extent and Peak Intensity to Test for Activations in Functional Imaging , 1997, NeuroImage.

[19]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[20]  P. Fox,et al.  Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs , 1997, Human brain mapping.

[21]  Leslie G. Ungerleider,et al.  Selective attention to face identity and color studied with f MRI , 1997, Human brain mapping.

[22]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[23]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan. , 1996, Journal of neurophysiology.

[24]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[25]  J. Duncan Cooperating brain systems in selective perception and action. , 1996 .

[26]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[27]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[28]  G. Mangun Neural mechanisms of visual selective attention. , 1995, Psychophysiology.

[29]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[30]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[31]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[32]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[33]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[34]  E. Miller,et al.  Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus , 1993, Brain Research.

[35]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[36]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[37]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[39]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[40]  M Corbetta,et al.  Attentional modulation of neural processing of shape, color, and velocity in humans. , 1990, Science.

[41]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[42]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[43]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[44]  G. Baylis,et al.  Movement and visual attention: the spotlight metaphor breaks down. , 1989, Journal of experimental psychology. Human perception and performance.

[45]  H. Spitzer,et al.  Increased attention enhances both behavioral and neuronal performance. , 1988, Science.

[46]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[47]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[48]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[49]  M. Goldberg,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. , 1981, Journal of neurophysiology.

[50]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[51]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[52]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[53]  D. Robinson,et al.  Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. , 1978, Journal of neurophysiology.

[54]  R. Wurtz,et al.  Enhancement of visual responses in monkey striate cortex and frontal eye fields. , 1976, Journal of neurophysiology.

[55]  A. Treisman Strategies and models of selective attention. , 1969, Psychological review.