Early Detection of Mixed Volatile Organic Compounds to Circumvent Calamitous Li-Ion Battery Thermal Runaway

[1]  V. Pol,et al.  Impedimetric Chemosensing of Volatile Organic Compounds Released from Li-Ion Batteries. , 2022, ACS sensors.

[2]  Nan Gao,et al.  Application of PEDOT:PSS and Its Composites in Electrochemical and Electronic Chemosensors , 2021 .

[3]  A. Fuchs,et al.  Early Detection of Failing Automotive Batteries Using Gas Sensors , 2021 .

[4]  Xuning Feng,et al.  Mitigating Thermal Runaway of Lithium-Ion Batteries , 2020 .

[5]  T. E. Adams,et al.  Lithium-ion Battery Thermal Safety by Early Internal Detection, Prediction and Prevention , 2019, Scientific Reports.

[6]  L. Rosell,et al.  Analysis of Li-Ion Battery Gases Vented in an Inert Atmosphere Thermal Test Chamber , 2019, Batteries.

[7]  Ting Cai,et al.  Early Detection for Li-Ion Batteries Thermal Runaway Based on Gas Sensing , 2019, ECS Transactions.

[8]  X. Duan,et al.  A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. , 2018, Nanoscale.

[9]  A. A. Moya Identification of characteristic time constants in the initial dynamic response of electric double layer capacitors from high-frequency electrochemical impedance , 2018, Journal of Power Sources.

[10]  Y. Fernandes,et al.  Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery , 2018, Journal of Power Sources.

[11]  Kai Peter Birke,et al.  Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries , 2018 .

[12]  Mark Amor-Segan,et al.  Looking Deeper into the Galaxy (Note 7) , 2018 .

[13]  Xuning Feng,et al.  Thermal runaway mechanism of lithium ion battery for electric vehicles: A review , 2018 .

[14]  R. Potyrailo Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. , 2016, Chemical reviews.

[15]  P. Kapur,et al.  A simple electronic tongue , 2012 .

[16]  Rishemjit Kaur,et al.  A novel approach using Dynamic Social Impact Theory for optimization of impedance-Tongue (iTongue) , 2011 .

[17]  R. Vig,et al.  Performance Evaluation of a Novel iTongue for Indian Black Tea Discrimination , 2010, IEEE Sensors Journal.

[18]  Dongsoo Jung,et al.  Electrospun PEDOT:PSS/PVP nanofibers as the chemiresistor in chemical vapour sensing , 2010 .

[19]  A. L. Kukla,et al.  Application of sensor arrays based on thin films of conducting polymers for chemical recognition of volatile organic solvents , 2009 .

[20]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[21]  H. Byun,et al.  Volatile Organic Gas Recognition Using Conducting Polymer Sensor Array , 2002 .

[22]  P Vadgama,et al.  Reagentless biosensing using electrochemical impedance spectroscopy. , 2002, Bioelectrochemistry.

[23]  Gregory A. Bakken,et al.  Computational methods for the analysis of chemical sensor array data from volatile analytes. , 2000, Chemical reviews.

[24]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .