Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid

This paper benchmarks an Estimation of Distribution Algorithm (EDA) and Particle Swarm Optimizer (PSO) on noise-free BBOB 2009 testbed. The algorithm is referred to as EDA-PSO and further enhanced with correlation-triggered adaptive variance scaling.

[1]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[2]  Franz Rothlauf,et al.  The correlation-triggered adaptive variance scaling IDEA , 2006, GECCO.

[3]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[4]  Mohammed El-Abd Preventing premature convergence in a PSO and EDA hybrid , 2009, 2009 IEEE Congress on Evolutionary Computation.

[5]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[6]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.