Microstructure, superplasticity, and mechanical properties of Al–Mg–Er–Zr alloys

[1]  A. Irzhak,et al.  The role of grain boundary sliding and intragranular deformation mechanisms for a steady stage of superplastic flow for Al–Mg-based alloys , 2022, Materials Science and Engineering: A.

[2]  R. Bjørge,et al.  Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al–7Mg alloy , 2021, International Journal of Plasticity.

[3]  Yu-tao Zhao,et al.  Characteristics of microstructural and mechanical evolution in 6111Al alloy containing Al3(Er,Zr) nanoprecipitates , 2021, Materials Characterization.

[4]  Zhiyi Liu,et al.  Effect of Minor Er Additions on the Microstructures and Mechanical Properties of Cast Al-Cu-Mg-Ag Alloys , 2021, Materials.

[5]  S. Ringer,et al.  Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions , 2021 .

[6]  Z. Du,et al.  The Process Design and Rapid Superplastic Forming of Industrial AA5083 for a Fender with a Negative Angle in a Small Batch , 2021, Metals.

[7]  Ahmed O. Mosleh,et al.  Characterization of Superplastic Deformation Behavior for a Novel Al-Mg-Fe-Ni-Zr-Sc Alloy: Arrhenius-Based Modeling and Artificial Neural Network Approach , 2021, Applied Sciences.

[8]  A. Prosviryakov,et al.  Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al–Er-Yb-Sc alloys with good electrical conductivity , 2021 .

[9]  Yun-jia Shi,et al.  The effects of scandium heterogeneous distribution on the precipitation behavior of Al3(Sc, Zr) in aluminum alloys , 2021 .

[10]  D. Wang,et al.  Evolution of texture, microstructure, tensile strength and corrosion properties of annealed Al–Mg–Sc–Zr alloys , 2020 .

[11]  D. Sorgente,et al.  Determination of biaxial stress–strain curves for superplastic materials by means of bulge forming tests at constant stress , 2020 .

[12]  Qianwen Zhang,et al.  The simple hyperbolic-sine equation for superplastic deformation and parameters optimization , 2020, Journal of Materials Research and Technology.

[13]  M. Myshlyaev,et al.  EBSD study of superplastically strained Al-Mg-Li alloy , 2020, Materials Letters.

[14]  O. Rofman,et al.  Experimental study of the superplastic deformation mechanisms of high-strength aluminum-based alloy , 2020 .

[15]  A. Mikhaylovskaya,et al.  Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys , 2020 .

[16]  A. Mikhaylovskaya,et al.  Surface and internal structural markers for studying grain boundary sliding and grain rotation , 2020, Materials Letters.

[17]  Ahmed O. Mosleh,et al.  High Strain Rate Superplasticity in Al-Zn-Mg-Based Alloy: Microstructural Design, Deformation Behavior, and Modeling , 2020, Materials.

[18]  I. Loginova,et al.  Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy , 2020 .

[19]  P. Tandon,et al.  Recent Development of Superplasticity in Aluminum Alloys: A Review , 2020, Metals.

[20]  Yun-lai Deng,et al.  Hot tensile deformation behaviors and a phenomenological AA5083 aluminum alloy fracture damage model , 2019, Materials Science and Engineering: A.

[21]  Ahmed O. Mosleh,et al.  Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6%Al-4%V titanium alloy , 2019, Journal of Manufacturing Processes.

[22]  O. Rofman,et al.  Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy , 2019, Materials Science and Engineering: A.

[23]  Y. Ning,et al.  Superplasticity induced by the competitive DRX between BCC beta and HCP alpha in Ti-4Al-3V-2Mo-2Fe alloy , 2019, Materials Characterization.

[24]  V. Velay,et al.  Superplasticity of metastable ultrafine-grained Ti 6242S alloy: Mechanical flow behavior and microstructural evolution , 2019, Materials Science and Engineering: A.

[25]  N. Tabachkova,et al.  The mechanism of L12 phase precipitation, microstructure and tensile properties of Al-Mg-Er-Zr alloy , 2019, Materials Science and Engineering: A.

[26]  Hailong Chen,et al.  Effect of Minor Er on the Microstructure and Properties of Al-6.0Mg-0.4Mn-0.1Cr-0.1Zr Alloys , 2018, Journal of Materials Engineering and Performance.

[27]  Ahmed O. Mosleh,et al.  Arrhenius-Type Constitutive Equation Model of Superplastic Deformation Behaviour of Different Titanium Based Alloys , 2018, Defect and Diffusion Forum.

[28]  W. Mufalo,et al.  Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy , 2018 .

[29]  T. Langdon,et al.  Superplasticity in Ultrafine-Grained Materials. , 2018 .

[30]  S. V. Makhov,et al.  Microstructure and mechanical properties of novel Al-Mg-Mn-Zr-Sc-Er alloy , 2017 .

[31]  Carlos A. S. Oliveira,et al.  Precipitation hardening in dilute Al–Zr alloys , 2017 .

[32]  V. Velay,et al.  Mesoscale modeling of dynamic recrystallization behavior, grain size evolution, dislocation density, processing map characteristic, and room temperature strength of Ti-6Al-4V alloy forged in the (α+β) region , 2017 .

[33]  P. Sanders,et al.  Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys , 2017, Metallurgical and Materials Transactions A.

[34]  A. Kotov,et al.  Formation of Fine-Grained Structure and Superplasticity in Commercial Aluminum Alloy 1565ch , 2017, Metal Science and Heat Treatment.

[35]  A. A. Tsarkov,et al.  Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment , 2016 .

[36]  C. Poletti,et al.  Influence of the degree of scandium supersaturation on the precipitation kinetics of rapidly solidified Al-Mg-Sc-Zr alloys , 2016 .

[37]  D. Xiao,et al.  Effect of Sc and Er additions on superplastic ductilities in Al-Mg-Mn-Zr alloy , 2016 .

[38]  Franziska Frankfurter,et al.  Smithells Metals Reference Book , 2016 .

[39]  R. Reed,et al.  Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications , 2015 .

[40]  A. Mikhaylovskaya,et al.  Effect of the solid-solution composition on the superplasticity characteristics of Al-Zn-Mg-Cu-Ni-Zr Alloys , 2014, The Physics of Metals and Metallography.

[41]  A. Mikhaylovskaya,et al.  A high-strength aluminium-based alloy with advanced superplasticity , 2014 .

[42]  R. Valiev,et al.  Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy , 2014 .

[43]  Zhaohe Gao,et al.  Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum , 2013 .

[44]  R. Kaibyshev,et al.  Mechanical properties and fracture behavior of an Al-Mg-Sc-Zr alloy at ambient and subzero temperatures , 2013 .

[45]  R. Valiev,et al.  Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena , 2012, 1203.6496.

[46]  Z. Nie,et al.  Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy , 2011 .

[47]  A. Mikhaylovskaya,et al.  Effect of eutectic particles on the grain size control and the superplasticity of aluminium alloys , 2011 .

[48]  A. Jenab,et al.  Evaluation of low strain rate constitutive equation of 7075 aluminium alloy at high temperature , 2011 .

[49]  T. Meinders,et al.  Mechanical experiments on the superplastic material ALNOVI-1, including leak information , 2011 .

[50]  R. Valiev,et al.  On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation , 2010, 1010.4644.

[51]  D. Seidman,et al.  Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging , 2010 .

[52]  P. Bate,et al.  Diffusion creep and superplasticity in aluminium alloys , 2010 .

[53]  Z. Nie,et al.  The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy , 2009 .

[54]  T. Langdon Seventy-five years of superplasticity: historic developments and new opportunities , 2009 .

[55]  D. Seidman,et al.  Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates , 2009 .

[56]  M. Markushev On the principles of the deformation methods of aluminum-alloys grain refinement to ultrafine size: I. Fine-grained alloys , 2009 .

[57]  A. Solonin,et al.  Study of work hardening of quenched and naturally aged Al–Mg and Al–Cu alloys , 2009 .

[58]  Marcel H. F. Sluiter,et al.  Impurity diffusion activation energies in Al from first principles , 2009 .

[59]  Yusong He,et al.  Tensile deformation and fracture behavior of spray-deposition 7075/15SiCp aluminum matrix composite sheet at elevated temperatures , 2008 .

[60]  P. Bate,et al.  Mechanical behaviour and microstructural evolution in superplastic Al-Li-Mg-Cu-Zr AA8090 , 2007 .

[61]  Z. Yin,et al.  Effect of minor Sc and Zr on superplasticity of Al-Mg-Mn alloys , 2007 .

[62]  D. Eskin,et al.  Optimization of hardening of Al–Zr–Sc cast alloys , 2006 .

[63]  D. Seidman,et al.  Criteria for developing castable, creep-resistant aluminum-based alloys – A review , 2006, International Journal of Materials Research.

[64]  Joanne L. Murray,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .

[65]  F. J. Humphreys,et al.  Microstructure and texture evolution in the tension of superplastic Al–6Cu–0.4Zr , 2005 .

[66]  H. Okamoto Al-Er (Aluminum-Erbium) , 2003 .

[67]  H. Miura,et al.  Continuous Dynamic Recrystallization in a Superplastic 7075 Aluminum Alloy , 2002 .

[68]  T. Langdon,et al.  Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys , 2002 .

[69]  A. Saccone,et al.  The Al-Er-Mg ternary system Part I: Experimental investigation , 2002 .

[70]  M. Slámová,et al.  Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys , 2001 .

[71]  H. Zbib,et al.  Constitutive modeling of deformation and damage in superplastic materials , 2001 .

[72]  V. V. Zakharov,et al.  Scientific principles of making an alloying addition of scandium to aluminium alloys , 2000 .

[73]  V. V. Zakharov,et al.  New Al–Mg–Sc alloys , 2000 .

[74]  Z. Yin,et al.  Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys , 2000 .

[75]  T. Bieler,et al.  Superplasticity in metals and ceramics , 1989 .

[76]  O. Sherby,et al.  On constitutive equations for various diffusion-controlled creep mechanisms , 1988 .

[77]  J. Wert,et al.  Modeling of recrystallization in alloys with a bimodal particle size distribution , 1984 .

[78]  C. Sellars,et al.  On the mechanism of hot deformation , 1966 .

[79]  J. H. Hollomon,et al.  Effect of Strain Rate Upon Plastic Flow of Steel , 1944 .