The Littlewood-Offord problem and invertibility of random matrices
暂无分享,去创建一个
[1] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[2] T. Tao,et al. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.
[3] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[4] M. Rudelson. Invertibility of random matrices: norm of the inverse , 2005, math/0507024.
[5] R. Latala. Some estimates of norms of random matrices , 2005 .
[6] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[7] T. Tao,et al. On random ±1 matrices: Singularity and determinant , 2004, STOC '05.
[8] R. Lata,et al. SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .
[9] D Teng. Smoothed Analysis of Algorithms , 2002 .
[10] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[11] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[12] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[13] P. Erdos. Extremal Problems in Number Theory , 2001 .
[14] Q. Shao,et al. Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .
[15] S. D. Chatterji. Proceedings of the International Congress of Mathematicians , 1995 .
[16] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[17] D. Stroock,et al. Probability Theory: An Analytic View , 1995, The Mathematical Gazette.
[18] Stanislaw J. Szarek,et al. Condition numbers of random matrices , 1991, J. Complex..
[19] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[20] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[21] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[22] Zoltán Füredi,et al. Solution of the Littlewood-Offord problem in high dimensions , 1988 .
[23] Z. Bai,et al. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .
[24] J. W. Silverstein,et al. A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .
[25] Andrew M. Odlyzko,et al. On subspaces spanned by random selections of plus/minus 1 vectors , 1988, Journal of combinatorial theory. Series A.
[26] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .
[27] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[28] S. Smale. On the efficiency of algorithms of analysis , 1985 .
[29] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[30] Gábor Halász. On the distribution of additive arithmetic functions , 1975 .
[31] C. Esseen. On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .
[32] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[33] Michel Loève,et al. Probability Theory I , 1977 .
[34] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[35] ACTA ARITHMETICA , 2022 .