The Littlewood-Offord problem and invertibility of random matrices

[1]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[2]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.

[3]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[4]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[5]  R. Latala Some estimates of norms of random matrices , 2005 .

[6]  T. Tao,et al.  On the singularity probability of random Bernoulli matrices , 2005, math/0501313.

[7]  T. Tao,et al.  On random ±1 matrices: Singularity and determinant , 2004, STOC '05.

[8]  R. Lata,et al.  SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .

[9]  D Teng Smoothed Analysis of Algorithms , 2002 .

[10]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[11]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[12]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[13]  P. Erdos Extremal Problems in Number Theory , 2001 .

[14]  Q. Shao,et al.  Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .

[15]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[16]  E. Szemerédi,et al.  On the probability that a random ±1-matrix is singular , 1995 .

[17]  D. Stroock,et al.  Probability Theory: An Analytic View , 1995, The Mathematical Gazette.

[18]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[19]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[20]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[21]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[22]  Zoltán Füredi,et al.  Solution of the Littlewood-Offord problem in high dimensions , 1988 .

[23]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[24]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[25]  Andrew M. Odlyzko,et al.  On subspaces spanned by random selections of plus/minus 1 vectors , 1988, Journal of combinatorial theory. Series A.

[26]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[27]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[28]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[29]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[30]  Gábor Halász On the distribution of additive arithmetic functions , 1975 .

[31]  C. Esseen On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .

[32]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[33]  Michel Loève,et al.  Probability Theory I , 1977 .

[34]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[35]  ACTA ARITHMETICA , 2022 .