Physiological and morphological properties of Dbx1‐derived respiratory neurons in the pre‐Bötzinger complex of neonatal mice

•  The transcription factor Dbx1 gives rise to putatively respiratory rhythm‐generating neurons in the pre‐Bötzinger complex. Comparative analysis of Dbx1‐derived (Dbx1+) and non‐Dbx1‐ derived (Dbx1−) neurons can help elucidate the cellular bases of respiratory rhythm generation. •  In vitro, Dbx1+ neurons activate earlier in the respiratory cycle, discharge larger magnitude inspiratory bursts and exhibit a lower rheobase compared with Dbx1− neurons. •  The Dbx1+ neurons tend to express the intrinsic currents IA (transient outward A‐current) and Ih (hyperpolarization‐activated current) in diametric opposition, which may facilitate temporal summation of excitatory synaptic inputs, whereas the Dbx1− neurons show no significant pattern of expression regarding IA and Ih. •  The Dbx1+ neurons exhibit smooth, spineless dendrites that project in the transverse plane, whereas the Dbx1− neurons are confined to the transverse plane to a lesser extent and sometimes exhibit spines. •  The properties of Dbx1+ neurons that may contribute to respiratory rhythmogenesis include a high level of excitability linked to ongoing network activity and dendritic properties that may facilitate synaptic integration.

[1]  D. Richter,et al.  Generation and maintenance of the respiratory rhythm. , 1982, The Journal of experimental biology.

[2]  Atsushi Miyawaki,et al.  Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain , 2011, Nature Neuroscience.

[3]  K. Ezure,et al.  Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm , 1990, Progress in Neurobiology.

[4]  H. Sugiyama,et al.  Glutamate Receptors , 2019, Methods in Molecular Biology.

[5]  博樹 東海林 Regionalized expression of the Dbx family homeobox genes in the embryonic CNS of the mouse , 1996 .

[6]  J. Feldman,et al.  Understanding the rhythm of breathing: so near, yet so far. , 2013, Annual review of physiology.

[7]  J C Smith,et al.  Pre-Bötzinger complex in the cat. , 1995, Journal of neurophysiology.

[8]  Consuelo Morgado-Valle,et al.  Glycinergic Pacemaker Neurons in PreBötzinger Complex of Neonatal Mouse , 2010, The Journal of Neuroscience.

[9]  Donald R McCrimmon,et al.  Sodium Currents in Medullary Neurons Isolated from the Pre-Bötzinger Complex Region , 2005, The Journal of Neuroscience.

[10]  F. Ruddle,et al.  Expression pattern of a murine homeobox gene, Dbx, displays extreme spatial restriction in embryonic forebrain and spinal cord. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Jan-Marino Ramirez,et al.  Determinants of inspiratory activity , 2005, Respiratory Physiology & Neurobiology.

[12]  J. Feldman,et al.  Role of persistent sodium current in mouse preBötzinger Complex neurons and respiratory rhythm generation , 2007, The Journal of physiology.

[13]  E. Callaway,et al.  Silencing preBötzinger Complex somatostatin-expressing neurons induces persistent apnea in awake rat , 2008, Nature Neuroscience.

[14]  T. Jessell,et al.  Control of Interneuron Fate in the Developing Spinal Cord by the Progenitor Homeodomain Protein Dbx1 , 2001, Neuron.

[15]  P. Danneman,et al.  Evaluation of five agents/methods for anesthesia of neonatal rats. , 1997, Laboratory animal science.

[16]  C. D. Del Negro,et al.  Outward Currents Contributing to Inspiratory Burst Termination in preBötzinger Complex Neurons of Neonatal Mice Studied in Vitro , 2010, Front. Neural Circuits.

[17]  Christopher G. Wilson,et al.  Functional Imaging, Spatial Reconstruction, and Biophysical Analysis of a Respiratory Motor Circuit Isolated In Vitro , 2008, The Journal of Neuroscience.

[18]  Jeffrey L. Mendenhall,et al.  Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations , 2009, Proceedings of the National Academy of Sciences.

[19]  Jun Ren,et al.  Fluorescent Tagging of Rhythmically Active Respiratory Neurons within the Pre-Bötzinger Complex of Rat Medullary Slice Preparations , 2005, The Journal of Neuroscience.

[20]  J. Feldman,et al.  Asymmetric control of inspiratory and expiratory phases by excitability in the respiratory network of neonatal mice in vitro , 2009, The Journal of physiology.

[21]  J. C. Smith,et al.  Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. , 1991, Science.

[22]  P. Guyenet,et al.  Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo , 1997, The Journal of comparative neurology.

[23]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[24]  I. Homma,et al.  Contribution of Ca2+‐dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro , 2003, The Journal of physiology.

[25]  L. Kubin,et al.  Hypoglossal premotor neurons of the intermediate medullary reticular region express cholinergic markers. , 2008, Journal of applied physiology.

[26]  W. Rall Cable theory for dendritic neurons , 1989 .

[27]  G. Drummond Reporting ethical matters in The Journal of Physiology: standards and advice , 2009, The Journal of physiology.

[28]  N. Mellen,et al.  Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons , 2001, Nature Neuroscience.

[29]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[30]  J. Greer,et al.  Central Respiratory Rhythmogenesis Is Abnormal in Lbx1- Deficient Mice , 2008, The Journal of Neuroscience.

[31]  Jeffrey C. Smith,et al.  Neuronal pacemaker for breathing visualized in vitro , 1999, Nature.

[32]  F. Fujiyama,et al.  Vesicular Glutamate Transporter 2 Is Required for Central Respiratory Rhythm Generation But Not for Locomotor Central Pattern Generation , 2006, The Journal of Neuroscience.

[33]  J. Feldman,et al.  Looking for inspiration: new perspectives on respiratory rhythm , 2006, Nature Reviews Neuroscience.

[34]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[35]  Yuchio Yanagawa,et al.  Electrophysiological and morphological characteristics of GABAergic respiratory neurons in the mouse pre‐Bötzinger complex , 2006, The European journal of neuroscience.

[36]  H. Koch,et al.  The role of spiking and bursting pacemakers in the neuronal control of breathing , 2011, Journal of biological physics.

[37]  J. Feldman,et al.  Sodium and Calcium Current-Mediated Pacemaker Neurons and Respiratory Rhythm Generation , 2005, The Journal of Neuroscience.

[38]  Slawomir J. Nasuto,et al.  Neuromantic – from Semi-Manual to Semi-Automatic Reconstruction of Neuron Morphology , 2012, Front. Neuroinform..

[39]  G. Prestwich,et al.  Phosphatidylinositol 4,5‐bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex , 2007, The Journal of physiology.

[40]  Jeffrey C. Smith,et al.  Persistent Na+ and K+-Dominated Leak Currents Contribute to Respiratory Rhythm Generation in the Pre-Bötzinger Complex In Vitro , 2008, The Journal of Neuroscience.

[41]  Joshua G Corbin,et al.  Developmental Origin of PreBötzinger Complex Respiratory Neurons , 2010, The Journal of Neuroscience.

[42]  N. Kessaris,et al.  Dbx1-Expressing Cells Are Necessary for the Survival of the Mammalian Anterior Neural and Craniofacial Structures , 2011, PloS one.

[43]  Jan-Marino Ramirez,et al.  Differential Contribution of Pacemaker Properties to the Generation of Respiratory Rhythms during Normoxia and Hypoxia , 2004, Neuron.

[44]  G. Ascoli,et al.  L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies , 2008, Nature Protocols.

[45]  J C Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions. , 2001, Journal of neurophysiology.

[46]  Robert J Butera,et al.  Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro. , 2002, Journal of neurophysiology.

[47]  C. D. Del Negro,et al.  Neurokinin receptor-expressing pre-botzinger complex neurons in neonatal mice studied in vitro. , 2007, Journal of neurophysiology.

[48]  B. Panaitescu,et al.  K+ and Ca2+ dependence of inspiratory-related rhythm in novel “calibrated” mouse brainstem slices , 2011, Respiratory Physiology & Neurobiology.

[49]  Jan-Marino Ramirez,et al.  The Role of the Hyperpolarization-Activated Current in Modulating Rhythmic Activity in the Isolated Respiratory Network of Mice , 2000, The Journal of Neuroscience.

[50]  Johan Ericson,et al.  Hindbrain interneurons and axon guidance signaling critical for breathing , 2010, Nature Neuroscience.

[51]  J. Champagnat,et al.  Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. , 1995, Physiological reviews.

[52]  C. Wahl-Schott,et al.  Hyperpolarization-activated cation channels: from genes to function. , 2009, Physiological reviews.

[53]  J. Ramirez,et al.  Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. , 2001, Journal of neurophysiology.

[54]  J. Champagnat,et al.  Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro. , 1996, Journal of neurophysiology.

[55]  Michele Migliore,et al.  Dendritic Ih Selectively Blocks Temporal Summation of Unsynchronized Distal Inputs in CA1 Pyramidal Neurons , 2004, Journal of Computational Neuroscience.

[56]  J. Feldman,et al.  Inspiratory bursts in the preBötzinger complex depend on a calcium‐activated non‐specific cation current linked to glutamate receptors in neonatal mice , 2007, Journal of Physiology.

[57]  Jeffrey L. Mendenhall,et al.  4‐Aminopyridine‐sensitive outward currents in preBötzinger complex neurons influence respiratory rhythm generation in neonatal mice , 2008, The Journal of physiology.

[58]  John A. White,et al.  Roles of IA and morphology in action potential propagation in CA1 pyramidal cell dendrites , 2007, Journal of Computational Neuroscience.

[59]  F. Peña,et al.  Calcium‐activated potassium currents differentially modulate respiratory rhythm generation , 2008, The European journal of neuroscience.

[60]  Jan-Marino Ramirez,et al.  Postnatal development differentially affects voltage-activated calcium currents in respiratory rhythmic versus nonrhythmic neurons of the pre-Bötzinger complex. , 2005, Journal of neurophysiology.

[61]  K. M. Spyer,et al.  Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models , 2001, Trends in Neurosciences.

[62]  M. Huntsman,et al.  Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala , 2009, Nature Neuroscience.

[63]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[64]  J. Champagnat,et al.  Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro. , 1996, Journal of neurophysiology.

[65]  Consuelo Morgado-Valle,et al.  Respiratory Rhythm An Emergent Network Property? , 2002, Neuron.

[66]  J. Feldman,et al.  Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. , 1999, Science.