TiO2 nanocomposites with high refractive index and transparency

Transparent polymer nanocomposites with high refractive index were prepared by grafting polymer chains onto anatase TiO2 nanoparticlesvia a combination of phosphate ligand engineering and alkyne-azide “click” chemistry. Highly crystalline TiO2 nanoparticles with 5 nm diameter were synthesized by a solvothermal method and used as high refractive index filler. The synthesized phosphate-azide ligand anchors strongly onto the TiO2 nanoparticle surface and the azide end group allows for attachment of poly(glycidyl methacrylate) (PGMA) polymer chains through an alkyne-azide “click” reaction. The refractive index of the composite material increased linearly from 1.5 up to 1.8 by increasing the loading of TiO2 particles to 30 vol % (60 wt %). UV-vis spectra show that the nanocomposites exhibited a transparency around 90% throughout the visible light range. It was also found that the PGMA-grafted TiO2 nanoparticles can be well dispersed into a commercial epoxy resin, forming transparent high refractive index TiO2-epxoy nanocomposites.

[1]  Y. Rao,et al.  Molecular Composites Comprising TiO2 and Their Optical Properties , 2008 .

[2]  Shinji Ando,et al.  Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film , 2009 .

[3]  W. Brittain,et al.  Combination of Living Radical Polymerization and Click Chemistry for Surface Modification , 2007 .

[4]  E. Schubert,et al.  High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes , 2008 .

[5]  Bin Zhao,et al.  Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials , 2009 .

[6]  J. Chiefari,et al.  Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process , 1998 .

[7]  T. Fukuda,et al.  Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of surface radical migration , 2001 .

[8]  Kothandapani Babu,et al.  Grafting of Poly(methyl methacrylate) Brushes from Magnetite Nanoparticles Using a Phosphonic Acid Based Initiator by Ambient Temperature Atom Transfer Radical Polymerization (ATATRP) , 2008, Nanoscale Research Letters.

[9]  Qing Peng,et al.  Near monodisperse TiO2 nanoparticles and nanorods. , 2006, Chemistry.

[10]  G. Kickelbick The search of a homogeneously dispersed material—the art of handling the organic polymer/metal oxide interface , 2008 .

[11]  Thad Druffel,et al.  Anti-reflective optical coatings incorporating nanoparticles , 2005, Nanotechnology.

[12]  Y. Imai,et al.  Synthesis and characterization of high refractive index nanoparticle/poly(arylene ether ketone) nanocomposites , 2010 .

[13]  B. Benicewicz,et al.  Functionalization of Silica Nanoparticles via the Combination of Surface-Initiated RAFT Polymerization and Click Reactions , 2008 .

[14]  Jae-Young Choi,et al.  Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites , 2008 .

[15]  E. Kumacheva,et al.  Rationalized Approach to Molecular Tailoring of Polymetallocenes with Predictable Optical Properties , 2004 .

[16]  N. Nakayama,et al.  Preparation and characterization of TiO2-ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization , 2007 .

[17]  U. Schubert,et al.  Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands , 2008 .

[18]  Wen-Chang Chen,et al.  High refractive index polyimide–nanocrystalline-titania hybrid optical materials , 2008 .

[19]  Wen‐Chang Chen,et al.  High‐refractive‐index thin films prepared from aminoalkoxysilane‐capped pyromellitic dianhydride–titania hybrid materials , 2001 .

[20]  R. Composto,et al.  Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers , 2008 .

[21]  N. Zydowicz,et al.  Nitroxide-Mediated Polymerization of Styrene Initiated from the Surface of Silica Nanoparticles. In Situ Generation and Grafting of Alkoxyamine Initiators , 2005 .

[22]  B. Benicewicz,et al.  Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization , 2005 .

[23]  Richard O. Claus,et al.  Molecular Self-Assembly of TiO2/Polymer Nanocomposite Films , 1997 .

[24]  N. Turro,et al.  Cross-Linked ``Matrix-Free'' Nanocomposites from Reactive Polymer-Silica Hybrid Nanoparticles , 2010 .

[25]  W. Brittain,et al.  Tandem RAFT polymerization and click chemistry : An efficient approach to surface modification , 2007 .

[26]  Okihiro Sugihara,et al.  Refractive index control and Rayleigh scattering properties of transparent TiO2 nanohybrid polymer. , 2009, The journal of physical chemistry. B.

[27]  W. G. van der Wiel,et al.  Magnetic nanoparticle assembly on surfaces using click chemistry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[28]  H. Otsuka,et al.  Polystyrene- and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization , 2004 .

[29]  G. Wegner,et al.  In-Situ Bulk Polymerization of Dilute Particle/MMA Dispersions , 2007 .

[30]  A. Margaillan,et al.  Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process , 2009 .

[31]  Harm-Anton Klok,et al.  Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. , 2009, Chemical reviews.

[32]  C. Dubois,et al.  High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss , 2010, 1009.2667.

[33]  P. Mutin,et al.  Hybrid materials from organophosphorus coupling molecules , 2005 .

[34]  G. Wegner,et al.  Optical properties of composites of PMMA and surface-modified zincite nanoparticles , 2007 .

[35]  S. Nie,et al.  Smart nanofibers from combined living radical polymerization, "click chemistry", and electrospinning. , 2009, ACS applied materials & interfaces.

[36]  Krzysztof Matyjaszewski,et al.  Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films , 2003 .

[37]  E. Schubert,et al.  Enhancement of photovoltaic cell response due to high-refractive-index encapsulants , 2010 .

[38]  Linda S. Schadler,et al.  Anisotropic self-assembly of spherical polymer-grafted nanoparticles. , 2009, Nature materials.

[39]  Bai Yang,et al.  High refractive index organic–inorganic nanocomposites: design, synthesis and application , 2009 .

[40]  Bai Yang,et al.  A facile one-pot route to transparent polymer nanocomposites with high ZnS nanophase contents via in situ bulk polymerization , 2009 .

[41]  M. Tan,et al.  Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications. , 2010, ACS applied materials & interfaces.

[42]  H. Althues,et al.  Functional inorganic nanofillers for transparent polymers. , 2007, Chemical Society reviews.

[43]  O. Wolfbeis,et al.  Colloidal silica nanoparticles for use in click chemistry-based conjugations and fluorescent affinity assays , 2010 .

[44]  N. Nakayama,et al.  Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents , 2008 .

[45]  C. Ryu,et al.  A Versatile Method To Prepare RAFT Agent Anchored Substrates and the Preparation of PMMA Grafted Nanoparticles , 2006 .

[46]  Jingang Liu,et al.  High refractive index polymers: fundamental research and practical applications , 2009 .

[47]  P. Cozzoli,et al.  Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. , 2003, Journal of the American Chemical Society.

[48]  W. Binder,et al.  Surface-modified nanoparticles via thermal and Cu(I)-mediated “click” chemistry: Generation of luminescent CdSe nanoparticles with polar ligands guiding supramolecular recognition , 2007 .

[49]  W. Huck,et al.  Polymer brushes via surface-initiated polymerizations. , 2004, Chemical Society reviews.

[50]  Yunpu Wang,et al.  Synthesis and characterization of end-functional polymers on silica nanoparticles via a combination of atom transfer radical polymerization and click chemistry , 2009 .

[51]  Lawrence F. Drummy,et al.  Assemblies of Titanium Dioxide-Polystyrene Hybrid Nanoparticles for Dielectric Applications , 2010 .

[52]  P. Charpentier,et al.  Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano‐TiO2 , 2008 .

[53]  Jeremiah A. Johnson,et al.  Toward the Syntheses of Universal Ligands for Metal Oxide Surfaces: Controlling Surface Functionality through Click Chemistry , 2006 .

[54]  Y. Mai,et al.  Facile Synthesis of Highly Transparent Polymer Nanocomposites by Introduction of Core–Shell Structured Nanoparticles , 2008 .

[55]  Yu-Ming Lin,et al.  Transparent high refractive index nanocomposite thin films , 2007 .

[56]  Bai Yang,et al.  High refractive index thin films of ZnS/polythiourethane nanocomposites , 2003 .

[57]  W. Caseri INORGANIC NANOPARTICLES AS OPTICALLY EFFECTIVE ADDITIVES FOR POLYMERS , 2008 .

[58]  É. Boisselier,et al.  Encapsulation and stabilization of gold nanoparticles with "click" polyethyleneglycol dendrimers. , 2010, Journal of the American Chemical Society.

[59]  Walter Caseri,et al.  Polymer‐TiO2 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials , 2003 .

[60]  Wen-Chang Chen,et al.  High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)−Titania Materials , 2001 .