Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System
暂无分享,去创建一个
[1] R. Eisenberg,et al. Matched Asymptotic Expansions of the Green’s Function for the Electric Potential in an Infinite Cylindrical Cell , 1976 .
[2] Stefan Fischer,et al. Translocation mechanism of long sugar chains across the maltoporin membrane channel. , 2002, Structure.
[3] Joseph W. Jerome,et al. CONSISTENCY OF SEMICONDUCTOR MODELING: AN EXISTENCE/STABILITY ANALYSIS FOR THE STATIONARY VAN ROOSBROECK SYSTEM* , 1985 .
[4] J. R. E. O’Malley. Singular perturbation methods for ordinary differential equations , 1991 .
[5] Robert S. Eisenberg,et al. Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..
[6] A. Nitzan,et al. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.
[7] James P. Keener,et al. Mathematical physiology , 1998 .
[8] Weishi Liu,et al. Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..
[9] J. Rosenbusch,et al. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.
[10] P. A. Lagerstrom,et al. Matched Asymptotic Expansions , 1988 .
[11] Zuzanna S Siwy,et al. Negative incremental resistance induced by calcium in asymmetric nanopores. , 2006, Nano letters.
[12] B. Nadler,et al. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] J. Cole,et al. Multiple Scale and Singular Perturbation Methods , 1996 .
[14] B. Sakmann,et al. Single-Channel Recording , 1983, Springer US.
[15] B. Sakmann,et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.
[16] Weishi Liu,et al. One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species , 2009 .
[17] Zuzanna S Siwy,et al. Calcium-induced voltage gating in single conical nanopores. , 2006, Nano letters.
[18] I. Rubinstein,et al. Multiple steady states in one-dimensional electrodiffusion with local electroneutrality , 1987 .
[19] Weishi Liu,et al. Geometric Singular Perturbation Approach to Steady-State Poisson--Nernst--Planck Systems , 2005, SIAM J. Appl. Math..
[20] B. Eisenberg,et al. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.
[21] Gail Cardew,et al. Gramicidin and related ion channel-forming peptides , 1999 .
[22] Isaak Rubinstein. Electro-diffusion of ions , 1987 .
[23] S. Hladky,et al. Discreteness of Conductance Change in Bimolecular Lipid Membranes in the Presence of Certain Antibiotics , 1970, Nature.
[24] Bixiang Wang,et al. Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.
[25] Robert S. Eisenberg,et al. Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .
[26] J Norbury,et al. Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels , 2008, European Journal of Applied Mathematics.
[27] Robert S. Eisenberg,et al. Ion flow through narrow membrane channels: part II , 1992 .
[28] Wiktor Eckhaus. Fundamental Concepts of Matching , 1994, SIAM Rev..
[29] Peter C Jordan. Trial by ordeal: ionic free energies in gramicidin. , 2002, Biophysical journal.
[30] M Karplus,et al. Ion transport in a model gramicidin channel. Structure and thermodynamics. , 1991, Biophysical journal.
[31] W. Eckhaus. Asymptotic Analysis of Singular Perturbations , 1979 .
[32] Benoît Roux,et al. Gramicidin Channels: Versatile Tools , 2007 .
[33] J. Norbury,et al. A POISSON-NERNST-PLANCK MODEL FOR BIOLOGICAL ION CHANNELS — AN ASYMPTOTIC ANALYSIS IN A 3-D NARROW FUNNEL , 2007 .
[34] Ansgar Philippsen,et al. Sugar Transport through Maltoporin of Escherichia coli: Role of the Greasy Slide , 2002, Journal of bacteriology.
[35] Robert S. Eisenberg,et al. Concentration-Dependent Shielding of Electrostatic Potentials Inside the Gramicidin A Channels , 2002 .
[36] Herbert Steinrück,et al. Asymptotic Analysis of the Current-Voltage Curve of a pnpn Semiconductor Device , 1989 .
[37] Martin Burger,et al. Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..
[38] R Elber,et al. Sodium in gramicidin: an example of a permion. , 1995, Biophysical journal.
[39] M. S. Mock,et al. AN EXAMPLE OF NONUNIQUENESS OF STATIONARY SOLUTIONS IN SEMICONDUCTOR DEVICE MODELS , 1982 .
[40] Lisen Kullman,et al. Transport of maltodextrins through maltoporin: a single-channel study. , 2002, Biophysical journal.
[41] Joseph W. Jerome,et al. A finite element approximation theory for the drift diffusion semiconductor model , 1991 .
[42] H. Weitzner,et al. Perturbation Methods in Applied Mathematics , 1969 .
[43] Joseph W. Jerome,et al. Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..
[44] Benoît Roux,et al. Ion transport in a gramicidin-like channel: dynamics and mobility , 1991 .
[45] B. Sakmann,et al. Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.
[46] Herbert Steinrück,et al. A bifurcation analysis of the one-dimensional steady-state semiconductor device equations , 1989 .
[47] Toby W Allen,et al. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. , 2006, Biophysical chemistry.
[48] Dirk Gillespie,et al. Density functional theory of charged, hard-sphere fluids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.