Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System

We investigate higher order matched asymptotic expansions of a steady-state Poisson-Nernst-Planck (PNP) system with particular attention to the I-V relations of ion channels. Assuming that the Debye length is small relative to the diameter of the narrow channel, the PNP system can be viewed as a singularly perturbed system. Special structures of the zeroth order inner and outer systems make it possible to provide an explicit derivation of higher order terms in the asymptotic expansions. For the case of zero permanent charge, our results concerning the I-V relation for two oppositely charged ion species are (i) the first order correction to the zeroth order linear I-V relation is generally quadratic in V; (ii) when the electro-neutrality condition is enforced at both ends of the channel, there is NO first order correction, but the second order correction is cubic in V. Furthermore (Theorem 3.4), up to the second order, the cubic I-V relation has (except for a very degenerate case) three distinct real roots that correspond to the bistable structure in the FitzHugh-Nagumo simplification of the Hodgkin-Huxley model.

[1]  R. Eisenberg,et al.  Matched Asymptotic Expansions of the Green’s Function for the Electric Potential in an Infinite Cylindrical Cell , 1976 .

[2]  Stefan Fischer,et al.  Translocation mechanism of long sugar chains across the maltoporin membrane channel. , 2002, Structure.

[3]  Joseph W. Jerome,et al.  CONSISTENCY OF SEMICONDUCTOR MODELING: AN EXISTENCE/STABILITY ANALYSIS FOR THE STATIONARY VAN ROOSBROECK SYSTEM* , 1985 .

[4]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[5]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[6]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[7]  James P. Keener,et al.  Mathematical physiology , 1998 .

[8]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..

[9]  J. Rosenbusch,et al.  Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.

[10]  P. A. Lagerstrom,et al.  Matched Asymptotic Expansions , 1988 .

[11]  Zuzanna S Siwy,et al.  Negative incremental resistance induced by calcium in asymmetric nanopores. , 2006, Nano letters.

[12]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[14]  B. Sakmann,et al.  Single-Channel Recording , 1983, Springer US.

[15]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[16]  Weishi Liu,et al.  One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species , 2009 .

[17]  Zuzanna S Siwy,et al.  Calcium-induced voltage gating in single conical nanopores. , 2006, Nano letters.

[18]  I. Rubinstein,et al.  Multiple steady states in one-dimensional electrodiffusion with local electroneutrality , 1987 .

[19]  Weishi Liu,et al.  Geometric Singular Perturbation Approach to Steady-State Poisson--Nernst--Planck Systems , 2005, SIAM J. Appl. Math..

[20]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[21]  Gail Cardew,et al.  Gramicidin and related ion channel-forming peptides , 1999 .

[22]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[23]  S. Hladky,et al.  Discreteness of Conductance Change in Bimolecular Lipid Membranes in the Presence of Certain Antibiotics , 1970, Nature.

[24]  Bixiang Wang,et al.  Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels , 2009, 0902.4290.

[25]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[26]  J Norbury,et al.  Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels , 2008, European Journal of Applied Mathematics.

[27]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[28]  Wiktor Eckhaus Fundamental Concepts of Matching , 1994, SIAM Rev..

[29]  Peter C Jordan Trial by ordeal: ionic free energies in gramicidin. , 2002, Biophysical journal.

[30]  M Karplus,et al.  Ion transport in a model gramicidin channel. Structure and thermodynamics. , 1991, Biophysical journal.

[31]  W. Eckhaus Asymptotic Analysis of Singular Perturbations , 1979 .

[32]  Benoît Roux,et al.  Gramicidin Channels: Versatile Tools , 2007 .

[33]  J. Norbury,et al.  A POISSON-NERNST-PLANCK MODEL FOR BIOLOGICAL ION CHANNELS — AN ASYMPTOTIC ANALYSIS IN A 3-D NARROW FUNNEL , 2007 .

[34]  Ansgar Philippsen,et al.  Sugar Transport through Maltoporin of Escherichia coli: Role of the Greasy Slide , 2002, Journal of bacteriology.

[35]  Robert S. Eisenberg,et al.  Concentration-Dependent Shielding of Electrostatic Potentials Inside the Gramicidin A Channels , 2002 .

[36]  Herbert Steinrück,et al.  Asymptotic Analysis of the Current-Voltage Curve of a pnpn Semiconductor Device , 1989 .

[37]  Martin Burger,et al.  Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..

[38]  R Elber,et al.  Sodium in gramicidin: an example of a permion. , 1995, Biophysical journal.

[39]  M. S. Mock,et al.  AN EXAMPLE OF NONUNIQUENESS OF STATIONARY SOLUTIONS IN SEMICONDUCTOR DEVICE MODELS , 1982 .

[40]  Lisen Kullman,et al.  Transport of maltodextrins through maltoporin: a single-channel study. , 2002, Biophysical journal.

[41]  Joseph W. Jerome,et al.  A finite element approximation theory for the drift diffusion semiconductor model , 1991 .

[42]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[43]  Joseph W. Jerome,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..

[44]  Benoît Roux,et al.  Ion transport in a gramicidin-like channel: dynamics and mobility , 1991 .

[45]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[46]  Herbert Steinrück,et al.  A bifurcation analysis of the one-dimensional steady-state semiconductor device equations , 1989 .

[47]  Toby W Allen,et al.  Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. , 2006, Biophysical chemistry.

[48]  Dirk Gillespie,et al.  Density functional theory of charged, hard-sphere fluids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.