ENUMERATION OF SEQUENCES CONSTRAINED BY THE RATIO OF CONSECUTIVE PARTS

Recurrences are developed to enumerate any family of nonnegative integer sequences = ( 1,..., n) satisfying the constraints: 1 a1 2 a2 ···

[1]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[2]  Mizan Rahman,et al.  Encyclopedia of Mathematics and its Applications , 1990 .

[3]  S. Corteel,et al.  Partitions and Compositions Defined by Inequalities , 2003 .

[4]  George E. Andrews,et al.  MacMahon’s Partition Analysis: I. The Lecture Hall Partition Theorem , 1998 .

[5]  Ae Ja Yee,et al.  On the Combinatorics of Lecture Hall Partitions , 2001 .

[6]  Sylvie Corteel,et al.  Lecture hall theorems, q-series and truncated objects , 2004, J. Comb. Theory, Ser. A.

[7]  Kimmo Eriksson,et al.  Lecture Hall Partitions , 1997 .

[8]  Ae Ja Yee,et al.  On the refined lecture hall theorem , 2002, Discret. Math..

[9]  George E. Andrews The Rogers-Ramanujan reciprocal and Minc’s partition function , 1981 .

[10]  H. Minc A Problem in Partitions: Enumeration of Elements of a given Degree in the free commutative entropic cyclic Groupoid , 1959 .

[11]  G. Andrews,et al.  MacMahon’s Partition Analysis V: Bijections, Recursions, and Magic Squares , 2001 .

[12]  Sylvie Corteel,et al.  Anti-Lecture Hall Compositions , 2003, Discret. Math..

[13]  Mireille Bousquet-Mélou,et al.  A Refinement of the Lecture Hall Theorem , 1999, J. Comb. Theory, Ser. A.

[14]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[15]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[16]  George E. Andrews,et al.  MacMahon's Partition Analysis: The Omega Package , 2001, Eur. J. Comb..

[17]  Kimmo Eriksson,et al.  Lecture Hall Partitions II , 1997 .