Developments in virus-like particle-based vaccines for HIV

Virus-like particles (VLPs) hold great promise for the development of effective and affordable vaccines. VLPs, indeed, are suitable for presentation and efficient delivery to antigen-presenting cells of linear as well as conformational antigens. This will ultimately result in a crosspresentation with both MHC class I and II molecules to prime CD4+ T-helper and CD8+ cytotoxic T cells. This review describes an update on the development and use of VLPs as vaccine approaches for HIV.

[1]  P. Ricciardi-Castagnoli,et al.  Dendritic cells process exogenous viral proteins and virus‐like particles for class I presentation to CD8+ cytotoxic T lymphocytes , 1996, European journal of immunology.

[2]  M. Totrov,et al.  HIV p24 as Scaffold for Presenting Conformational HIV Env Antigens , 2012, PloS one.

[3]  F. Buonaguro,et al.  Baculovirus-Derived Human Immunodeficiency Virus Type 1 Virus-Like Particles Activate Dendritic Cells and Induce Ex Vivo T-Cell Responses , 2006, Journal of Virology.

[4]  S. Akira,et al.  Recognition of viruses by innate immunity , 2007, Immunological reviews.

[5]  M. Loutfy,et al.  Salvage antiretroviral therapy in HIV infection , 2002, Expert opinion on pharmacotherapy.

[6]  Lars Karlsson,et al.  TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. , 2007, Inflammation & allergy drug targets.

[7]  P. Earl,et al.  Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. , 2002, Vaccine.

[8]  F. Buonaguro,et al.  Th2 Polarization in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus (HIV)-Infected Subjects, as Activated by HIV Virus-Like Particles , 2008, Journal of Virology.

[9]  Tahir A. Rizvi,et al.  Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian–human immunodeficiency virus infection , 2000, Nature Medicine.

[10]  P. Alves,et al.  Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances. , 2011, Biotechnology advances.

[11]  M. Plebanski,et al.  Vaccines that facilitate antigen entry into dendritic cells , 2004, Immunology and cell biology.

[12]  L. Buonaguro,et al.  Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference. , 2010, The Lancet. Infectious diseases.

[13]  B. Haynes,et al.  Incorporation of High Levels of Chimeric Human Immunodeficiency Virus Envelope Glycoproteins into Virus-Like Particles , 2007, Journal of Virology.

[14]  T. Ross,et al.  Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. , 2009, Vaccine.

[15]  Tiansen Li,et al.  DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration , 2004, Gene Therapy.

[16]  R. Wagner,et al.  Increased incorporation of chimeric human immunodeficiency virus type 1 gp120 proteins into Pr55gag virus-like particles by an Epstein-Barr virus gp220/350-derived transmembrane domain. , 1997, Virology.

[17]  C. Leclerc,et al.  CD8α2 CD11b+ Dendritic Cells Present Exogenous Virus-like Particles to CD8+ T Cells and Subsequently Express CD8α and CD205 Molecules , 2002, The Journal of experimental medicine.

[18]  J. Lisziewicz,et al.  Single DermaVir Immunization: Dose-Dependent Expansion of Precursor/Memory T Cells against All HIV Antigens in HIV-1 Infected Individuals , 2012, PloS one.

[19]  P. Cannon,et al.  Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Peabody,et al.  Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. , 2008, Journal of molecular biology.

[21]  Francesco M. Marincola,et al.  Gene expression profile of peripheral blood mononuclear cells in response to HIV-VLPs stimulation , 2008, BMC Bioinformatics.

[22]  A. Jegerlehner,et al.  Critical Role for Activation of Antigen-Presenting Cells in Priming of Cytotoxic T Cell Responses After Vaccination with Virus-Like Particles1 , 2002, The Journal of Immunology.

[23]  J. Reimann,et al.  Virus-like particles induce MHC class I-restricted T-cell responses. Lessons learned from the hepatitis B small surface antigen. , 1996, Intervirology.

[24]  D. Montefiori,et al.  Induction of Neutralizing Antibodies and Gag-Specific Cellular Immune Responses to an R5 Primary Isolate of Human Immunodeficiency Virus Type 1 in Rhesus Macaques , 2001, Journal of Virology.

[25]  L. Buonaguro,et al.  Constitutive expression of HIV-VLPs in stably transfected insect cell line for efficient delivery system. , 2010, Vaccine.

[26]  R. Compans,et al.  Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. , 2007, Vaccine.

[27]  Pham Phung,et al.  Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target , 2009, Science.

[28]  S. Zhang,et al.  Virus-like particle vaccine activates conventional B2 cells and promotes B cell differentiation to IgG2a producing plasma cells. , 2009, Molecular immunology.

[29]  E. Jacobs,et al.  Assembly and release of HIV-1 precursor Pr55 gag virus-like particles from recombinant baculovirus-infected insect cells , 1989, Cell.

[30]  T. Ross,et al.  Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. , 2007, Virology.

[31]  J. M. Seguí-Simarro,et al.  Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. , 2008, Plant biotechnology journal.

[32]  R. Compans,et al.  Enhanced Mucosal Immune Responses to HIV Virus-Like Particles Containing a Membrane-Anchored Adjuvant , 2011, mBio.

[33]  J. Falloon Salvage antiretroviral therapy. , 2000, AIDS.

[34]  A. Jegerlehner,et al.  Pattern recognition by B cells: the role of antigen repetitiveness versus Toll-like receptors. , 2008, Current topics in microbiology and immunology.

[35]  F. Marincola,et al.  Immature monocyte derived dendritic cells gene expression profile in response to Virus-Like Particles stimulation , 2005, Journal of Translational Medicine.

[36]  Tanmoy Bhattacharya,et al.  HLA Class I-Driven Evolution of Human Immunodeficiency Virus Type 1 Subtype C Proteome: Immune Escape and Viral Load , 2008, Journal of Virology.

[37]  J. Bartlett,et al.  Successes, challenges, and limitations of current antiretroviral therapy in low-income and middle-income countries. , 2009, The Lancet. Infectious diseases.

[38]  R. Wagner,et al.  Priming of strong, broad, and long-lived HIV type 1 p55gag-specific CD8+ cytotoxic T cells after administration of a virus-like particle vaccine in rhesus macaques. , 2000, AIDS research and human retroviruses.

[39]  C. Malboeuf,et al.  Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. , 2007, Vaccine.

[40]  V. Vogt,et al.  Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1 , 1995, Journal of virology.

[41]  M. Prevost,et al.  High efficient production of Pr55(gag) virus-like particles expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate of subtype A. , 2001, Antiviral research.

[42]  G. Song,et al.  Papillomavirus virus-like particles as vehicles for the delivery of epitopes or genes , 2006, Archives of Virology.

[43]  S. Osmanov,et al.  HIV vaccines: a global perspective. , 2003, Current molecular medicine.

[44]  R. Wagner,et al.  Construction, expression, and immunogenicity of chimeric HIV-1 virus-like particles. , 1996, Virology.

[45]  K. Matsubara,et al.  Expression of hepatitis B virus core antigen gene in Saccharomyces cerevisiae: synthesis of two polypeptides translated from different initiation codons , 1986, Journal of virology.

[46]  E. Rybicki,et al.  Chimaeric HIV-1 subtype C Gag molecules with large in-frame C-terminal polypeptide fusions form virus-like particles. , 2008, Virus research.

[47]  F. Marincola,et al.  Molecular immune signatures of HIV‐1 vaccines in human PBMCs , 2009, FEBS letters.

[48]  W. Blattner,et al.  Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. , 2011, The Journal of infectious diseases.

[49]  K. Schwarz,et al.  Role of Toll‐like receptors in costimulating cytotoxic T cell responses , 2003, European journal of immunology.

[50]  Todd M. Allen,et al.  Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection , 2003, AIDS (London).

[51]  D. Lowy,et al.  Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Zinkernagel,et al.  Formalin inactivation of vesicular stomatitis virus impairs T-cell- but not T-help-independent B-cell responses , 1993, Journal of virology.

[53]  K. Nagashima,et al.  Chimeric HIV-1 virus-like particles containing gp120 epitopes as a result of a ribosomal frameshift elicit Gag- and SU-specific murine cytotoxic T-lymphocyte activities. , 1997, Virology.

[54]  L. Racioppi,et al.  Induction of neutralizing antibodies and cytotoxic T lymphocytes in Balb/c mice immunized with virus-like particles presenting a gp120 molecule from a HIV-1 isolate of clade A. , 2002, Antiviral research.

[55]  F. Buonaguro,et al.  Can HIV p24 Be a Suitable Scaffold for Presenting Env Antigens? , 2011, Clinical and Vaccine Immunology.

[56]  S. Hammer,et al.  HIV Vaccine Research: The Way Forward , 2008, Science.

[57]  D. D. Da Silva,et al.  Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells. , 2003, Cancer research.

[58]  J. Reimann,et al.  Virus-Like Particles Induce MHC Class I-Restricted T-Cell Responses , 1996 .

[59]  F. Buonaguro,et al.  High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts , 2009, Planta.

[60]  P. Volberding,et al.  Antiretroviral therapy and management of HIV infection , 2010, The Lancet.

[61]  A. Rein,et al.  In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain , 1999, Journal of Virology.

[62]  Bin Li,et al.  HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphotye Recognition , 2008, Journal of Virology.

[63]  D. Montefiori,et al.  Induction of Neutralizing Antibodies against Human Immunodeficiency Virus Type 1 Primary Isolates by Gag-Env Pseudovirion Immunization , 2005, Journal of Virology.

[64]  F. Buonaguro,et al.  Immunogenicity of HIV Virus-Like Particles in Rhesus Macaques by Intranasal Administration , 2012, Clinical and Vaccine Immunology.

[65]  F. Buonaguro,et al.  Induction of Systemic and Mucosal Cross-Clade Neutralizing Antibodies in BALB/c Mice Immunized with Human Immunodeficiency Virus Type 1 Clade A Virus-Like Particles Administered by Different Routes of Inoculation , 2005, Journal of Virology.

[66]  B. Autran,et al.  Yeast-Derived Human Immunodeficiency Virus Type 1 p55gag Virus-Like Particles Activate Dendritic Cells (DCs) and Induce Perforin Expression in Gag-Specific CD8+ T Cells by Cross-Presentation of DCs , 2003, Journal of Virology.

[67]  J. Mascola,et al.  Protection of Macaques against Pathogenic Simian/Human Immunodeficiency Virus 89.6PD by Passive Transfer of Neutralizing Antibodies , 1999, Journal of Virology.

[68]  R. Zinkernagel,et al.  Neutralizing antiviral B cell responses. , 1997, Annual review of immunology.

[69]  Mark Connors,et al.  Broad HIV-1 neutralization mediated by CD4-binding site antibodies , 2007, Nature Medicine.

[70]  M. Gething,et al.  Antigen Presentation Pathways to Class I and Class II MHC‐Restricted T Lymphocytes , 1987, Immunological reviews.

[71]  P. Earl,et al.  Different Patterns of Immune Responses but Similar Control of a Simian-Human Immunodeficiency Virus 89.6P Mucosal Challenge by Modified Vaccinia Virus Ankara (MVA) and DNA/MVA Vaccines , 2002, Journal of Virology.

[72]  S. Zolla-Pazner,et al.  Expression and characterization of genetically engineered human immunodeficiency virus-like particles containing modified envelope glycoproteins: implications for development of a cross-protective AIDS vaccine , 1992, Journal of virology.

[73]  R. Compans,et al.  Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system. , 1995, Virology.

[74]  L. Lopalco,et al.  Generation of HIV-1 Virus-Like Particles expressing different HIV-1 glycoproteins. , 2011, Vaccine.

[75]  R. Zinkernagel,et al.  The influence of antigen organization on B cell responsiveness. , 1993, Science.

[76]  Zhong Huang,et al.  Virus-like particles production in green plants. , 2006, Methods.

[77]  R. Paredes,et al.  Clinical management of HIV-1 resistance. , 2010, Antiviral research.

[78]  L. Buonaguro,et al.  HIV-Gag VLPs presenting trimeric HIV-1 gp140 spikes constitutively expressed in stable double transfected insect cell line. , 2011, Vaccine.

[79]  Mario Roederer,et al.  HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. , 2006, Blood.

[80]  R. Compans,et al.  Human immunodeficiency virus-like particles activate multiple types of immune cells. , 2007, Virology.

[81]  F. Buonaguro,et al.  Virus-like particle vaccines and adjuvants: the HPV paradigm , 2009, Expert review of vaccines.

[82]  F. Buonaguro,et al.  DNA-VLP prime-boost intra-nasal immunization induces cellular and humoral anti-HIV-1 systemic and mucosal immunity with cross-clade neutralizing activity. , 2007, Vaccine.

[83]  O. Haffar,et al.  HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles. , 1991, Virology.

[84]  Mark Yeager,et al.  X-Ray Structures of the Hexameric Building Block of the HIV Capsid , 2009, Cell.

[85]  B. Moss,et al.  DNA/MVA vaccine for HIV type 1: effects of codon-optimization and the expression of aggregates or virus-like particles on the immunogenicity of the DNA prime. , 2004, AIDS research and human retroviruses.

[86]  A. Burny,et al.  The GAG precursor of simian immunodeficiency virus assembles into virus‐like particles. , 1989, EMBO Journal.

[87]  R. Wagner,et al.  Recombinant human immunodeficiency Pr55gag virus-like particles presenting chimeric envelope glycoproteins induce cytotoxic T-cells and neutralizing antibodies. , 1997, Virology.

[88]  A. Kingsman,et al.  Hybrid human immunodeficiency virus Gag particles as an antigen carrier system: induction of cytotoxic T-cell and humoral responses by a Gag:V3 fusion , 1993, Journal of virology.

[89]  J. Binley,et al.  A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing no envelope and soluble monomeric gp120. , 2007, Virology.

[90]  K. Rosenthal,et al.  Multiple tandem copies of conserved gp41 epitopes incorporated in gag virus-like particles elicit systemic and mucosal antibodies in an optimized heterologous vector delivery regimen. , 2010, Vaccine.

[91]  Jessica Yu,et al.  Immunogenicity of recombinant human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a pre-fusion state. , 2007, Vaccine.

[92]  J. Mascola,et al.  Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies , 2000, Nature Medicine.

[93]  F. Buonaguro,et al.  Virus-like particles as particulate vaccines. , 2010, Current HIV research.

[94]  C. Leclerc,et al.  In Vivo, Dendritic Cells Can Cross-Present Virus-Like Particles Using an Endosome-to-Cytosol Pathway 1 , 2003, The Journal of Immunology.

[95]  F. Lechner,et al.  Cross‐presentation of virus‐like particles by skin‐derived CD8– dendritic cells: a dispensable role for TAP , 2002, European journal of immunology.

[96]  Douglas D. Richman,et al.  Dissecting the Neutralizing Antibody Specificities of Broadly Neutralizing Sera from Human Immunodeficiency Virus Type 1-Infected Donors , 2007, Journal of Virology.

[97]  P. Pumpens,et al.  Recombinant RNA phage Q beta capsid particles synthesized and self-assembled in Escherichia coli. , 1993, Gene.

[98]  P. Lenz,et al.  Interaction of papillomavirus virus-like particles with human myeloid antigen-presenting cells. , 2003, Clinical immunology.

[99]  J. Lisziewicz,et al.  DermaVir: a novel topical vaccine for HIV/AIDS. , 2005, The Journal of investigative dermatology.

[100]  D. Kvale,et al.  Long term adverse effects related to nucleoside reverse transcriptase inhibitors: Clinical impact of mitochondrial toxicity , 2009, Scandinavian journal of infectious diseases.

[101]  Shan Lu Heterologous prime-boost vaccination. , 2009, Current opinion in immunology.

[102]  Richard T. Wyatt,et al.  Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals , 2009, Nature.

[103]  R. Compans,et al.  Incorporation of Glycosylphosphatidylinositol-Anchored Granulocyte- MacrophageColony-Stimulating Factor or CD40 Ligand Enhances Immunogenicity of Chimeric Simian Immunodeficiency Virus-Like Particles , 2006, Journal of Virology.

[104]  P. Roy,et al.  Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV , 1990, Journal of virology.

[105]  M. Hilleman,et al.  Human hepatitis B vaccine from recombinant yeast , 1984, Nature.

[106]  R. Compans,et al.  Incorporation of Membrane-Anchored Flagellin into Influenza Virus-Like Particles Enhances the Breadth of Immune Responses , 2008, Journal of Virology.

[107]  E. Snezhkov,et al.  Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein. , 1993, Virology.

[108]  J. Lisziewicz,et al.  A plasmid DNA immunogen expressing fifteen protein antigens and complex virus-like particles (VLP+) mimicking naturally occurring HIV. , 2011, Vaccine.

[109]  R. Compans,et al.  Influenza vaccines based on virus-like particles. , 2009, Virus research.

[110]  K. Schwarz,et al.  Virus-Like Particles as Carriers for T-Cell Epitopes: Limited Inhibition of T-Cell Priming by Carrier-Specific Antibodies , 2005, Journal of Virology.

[111]  Louis J. Picker,et al.  New paradigms for HIV/AIDS vaccine development. , 2012, Annual review of medicine.

[112]  P. Coursaget,et al.  In vitro gene transfer using human papillomavirus-like particles. , 1998, Nucleic acids research.

[113]  T. Liang,et al.  Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[114]  D. Wong,et al.  Hepatitis C Virus Structural Proteins Assemble into Viruslike Particles in Insect Cells , 1998, Journal of Virology.

[115]  K. Schwarz,et al.  Nonmethylated CG Motifs Packaged into Virus-Like Particles Induce Protective Cytotoxic T Cell Responses in the Absence of Systemic Side Effects , 2004, The Journal of Immunology.

[116]  G. Glenn,et al.  H5N1 Virus-Like Particle Vaccine Elicits Cross-Reactive Neutralizing Antibodies That Preferentially Bind to the Oligomeric Form of Influenza Virus Hemagglutinin in Humans , 2011, Journal of Virology.

[117]  A. Kingsman,et al.  Immunogenicity of the yeast recombinant p17/p24:Ty virus-like particles (p24-VLP) in healthy volunteers. , 1995, Vaccine.

[118]  E. Cortés,et al.  Recombinant vaccine for canine parvovirus in dogs , 1992, Journal of virology.

[119]  M. Klowden,et al.  Baculovirus-mediated expression of bacterial genes in dipteran and mammalian cells , 1985, Journal of virology.