NQO1 regulates mitotic progression and response to mitotic stress through modulating SIRT2 activity

[1]  R. de Cabo,et al.  Redox modulation of NQO1 , 2018, PloS one.

[2]  J. Baur,et al.  NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. , 2017, Cell metabolism.

[3]  D. Sinclair,et al.  Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise , 2017, Scientific Reports.

[4]  F. Sotgia,et al.  Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer , 2017, Oncotarget.

[5]  Jun Yao,et al.  Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors. , 2016, Cancer cell.

[6]  A. Lánczky,et al.  miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients , 2016, Breast Cancer Research and Treatment.

[7]  S. Park,et al.  SIRT2 deletion enhances KRAS-induced tumorigenesis in vivo by regulating K147 acetylation status , 2016, Oncotarget.

[8]  D. Sinclair,et al.  Head to Head Comparison of Short-Term Treatment with the NAD+ Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice , 2016, Front. Pharmacol..

[9]  D. Barford,et al.  Molecular basis of APC/C regulation by the spindle assembly checkpoint , 2016, Nature.

[10]  J. Shah,et al.  Group IVA Cytosolic Phospholipase A2 Regulates the G2-to-M Transition by Modulating the Activity of Tumor Suppressor SIRT2 , 2015, Molecular and Cellular Biology.

[11]  Timothy B Sackton,et al.  Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C , 2014, Nature.

[12]  Chunaram Choudhary,et al.  The growing landscape of lysine acetylation links metabolism and cell signalling , 2014, Nature Reviews Molecular Cell Biology.

[13]  D. Sinclair,et al.  SIRT2 induces the checkpoint kinase BubR1 to increase lifespan , 2014, The EMBO journal.

[14]  Anthony,et al.  SIRT 2 induces the checkpoint kinase BubR 1 to increase lifespan , 2014 .

[15]  D. Ross,et al.  NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Localizes to the Mitotic Spindle in Human Cells , 2012, PloS one.

[16]  C. Deng,et al.  SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. , 2012, Translational cancer research.

[17]  Johan Auwerx,et al.  Sirtuins as regulators of metabolism and healthspan , 2012, Nature Reviews Molecular Cell Biology.

[18]  M. Malumbres,et al.  Killing cells by targeting mitosis , 2012, Cell Death and Differentiation.

[19]  X. Wang,et al.  SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. , 2011, Cancer cell.

[20]  D. Petersen,et al.  The human sirtuin family: Evolutionary divergences and functions , 2011, Human Genomics.

[21]  D. Oh,et al.  Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. , 2010, Cancer cell.

[22]  C. Dumontet,et al.  Microtubule-binding agents: a dynamic field of cancer therapeutics , 2010, Nature Reviews Drug Discovery.

[23]  R. Barrios,et al.  Inactivation of the quinone oxidoreductases NQO1 and NQO2 strongly elevates the incidence and multiplicity of chemically induced skin tumors. , 2010, Cancer research.

[24]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[25]  C. Deng,et al.  Recent progress in the biology and physiology of sirtuins , 2009, Nature.

[26]  J. Pines The APC/C: a smörgåsbord for proteolysis. , 2009, Molecular cell.

[27]  M. Oshimura,et al.  SIRT2 downregulation confers resistance to microtubule inhibitors by prolonging chronic mitotic arrest , 2009, Cell cycle.

[28]  M. Malumbres,et al.  Genomic stability and tumour suppression by the APC/C cofactor Cdh1 , 2008, Nature Cell Biology.

[29]  Jörg Vervoorts,et al.  The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility , 2008, The Journal of cell biology.

[30]  E. Verdin,et al.  Pesticides project progresses while the peace process stalls. , 1997, Environmental health perspectives.

[31]  J. Minna,et al.  An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by β-lapachone , 2007, Proceedings of the National Academy of Sciences.

[32]  E. Verdin,et al.  Mitotic Regulation of SIRT2 by Cyclin-dependent Kinase 1-dependent Phosphorylation* , 2007, Journal of Biological Chemistry.

[33]  M. Oshimura,et al.  SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress , 2007, Oncogene.

[34]  F. Alt,et al.  SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. , 2006, Genes & development.

[35]  Y. Shaul,et al.  A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. , 2005, Genes & development.

[36]  L. Berliner,et al.  NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. , 2004, Molecular pharmacology.

[37]  Michael A. Tainsky,et al.  Role for Human SIRT2 NAD-Dependent Deacetylase Activity in Control of Mitotic Exit in the Cell Cycle , 2003, Molecular and Cellular Biology.

[38]  J. Denu,et al.  The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. , 2003, Molecular cell.

[39]  J. L. Stringer,et al.  In Vivo Role of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) in the Regulation of Intracellular Redox State and Accumulation of Abdominal Adipose Tissue* , 2001, The Journal of Biological Chemistry.

[40]  D. Ross,et al.  Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. , 2001, Molecular pharmacology.

[41]  A. Dinkova-Kostova,et al.  Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. , 2000, Free radical biology & medicine.

[42]  M. McVey,et al.  The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. , 1999, Genes & development.

[43]  A. Jaiswal,et al.  Disruption of the DT Diaphorase (NQO1) Gene in Mice Leads to Increased Menadione Toxicity* , 1998, The Journal of Biological Chemistry.

[44]  E. Cadenas,et al.  [30] DT-diaphorase : purification, properties, and function , 1990 .

[45]  E. Cadenas,et al.  DT-diaphorase: purification, properties, and function. , 1990, Methods in enzymology.

[46]  I. Herskowitz,et al.  A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. , 1979, Genetics.