Rational Beliefs Real Agents Can Have - A Logical Point of View

The purpose of this note is to outline a framework for uncertain reasoning which drops unrealistic assumptions about the agents’ inferential capabilities. To do so, we envisage a pivotal role for the recent research programme of depth-bounded Boolean logics (D’Agostino et al., 2013). We suggest that this can be fruitfully extended to the representation of rational belief under uncertainty. By doing this we lay the foundations for a prescriptive account of rational belief, namely one that realistic agents, as opposed to idealised ones, can feasibly act upon.

[1]  Matthias C. M. Troffaes,et al.  Introduction to imprecise probabilities , 2014 .

[2]  Marcello D'Agostino An informational view of classical logic , 2015, Theor. Comput. Sci..

[3]  Lurdes Y. T. Inoue,et al.  Decision Theory: Principles and Approaches , 2009 .

[4]  James M. Crawford,et al.  A Non-Deterministic Semantics for Tractable Inference , 1998, AAAI/IAAI.

[5]  Hykel Hosni,et al.  Coherence in the aggregate: A betting method for belief functions on many-valued events , 2015, Int. J. Approx. Reason..

[6]  Jerome R Busemeyer,et al.  Can quantum probability provide a new direction for cognitive modeling? , 2013, The Behavioral and brain sciences.

[7]  Dov M. Gabbay,et al.  Semantics and proof-theory of depth bounded Boolean logics , 2013, Theor. Comput. Sci..

[8]  A. Avron,et al.  NON-DETERMINISTIC SEMANTICS FOR LOGICAL SYSTEMS , 2011 .

[9]  I. Gilboa Theory Of Decision Under Uncertainty , 2009 .

[10]  Itzhak Gilboa,et al.  Rationality of belief or: why savage’s axioms are neither necessary nor sufficient for rationality , 2007, Synthese.

[11]  Diederik Aerts,et al.  Why the Disjunction in Quantum Logic is Not Classical , 2000 .

[12]  Hykel Hosni,et al.  On the logical structure of de Finetti's notion of event , 2014, J. Appl. Log..

[13]  Roberto Giuntini,et al.  Reasoning in quantum theory , 2004 .

[14]  Simon French,et al.  Decision Making: Descriptive, Normative, and Prescriptive Interactions , 1990 .

[15]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[16]  Leonard J. Savage,et al.  Difficulties in the Theory of Personal Probability , 1967, Philosophy of Science.