Deordering and Numeric Macro Actions for Plan Repair

The paper faces the problem of plan repair in presence of numeric information, by providing a new method for the intelligent selection of numeric macro actions. The method relies on a generalization of deordering, extended with new conditions accounting for dependencies and threats implied by the numeric components. The deordering is used as a means to infer (hopefully) minimal ordering constraints then used to extract independent and informative macro actions. Each macro aims at compactly representing a sub-solution for the overall planning problem. To verify the feasibility of the approach, the paper reports experiments in various domains from the International Planning Competition. Results show (i) the competitiveness of the strategy in terms of coverage, time and quality of the resulting plans wrt current approaches, and (ii) the actual independence from the planner employed.

[1]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[2]  Richard E. Korf,et al.  Macro-Operators: A Weak Method for Learning , 1985, Artif. Intell..

[3]  Steven Minton,et al.  Quantitative Results Concerning the Utility of Explanation-based Learning , 1988, Artif. Intell..

[4]  Subbarao Kambhampati,et al.  A Unified Framework for Explanation-Based Generalization of Partially Ordered and Partially Instantiated Plans , 1994, Artif. Intell..

[5]  Bernhard Nebel,et al.  Plan Reuse Versus Plan Generation: A Theoretical and Empirical Analysis , 1995, Artif. Intell..

[6]  Christer Bäckström Computational Aspects of Reordering Plans , 1998, J. Artif. Intell. Res..

[7]  Jörg Hoffmann,et al.  The Metric-FF Planning System: Translating ''Ignoring Delete Lists'' to Numeric State Variables , 2003, J. Artif. Intell. Res..

[8]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[9]  Ronen I. Brafman,et al.  Conformant planning via heuristic forward search: A new approach , 2004, Artif. Intell..

[10]  Jonathan Schaeffer,et al.  Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators , 2005, J. Artif. Intell. Res..

[11]  Mathijs de Weerdt,et al.  Plan Repair as an Extension of Planning , 2005, ICAPS.

[12]  Subbarao Kambhampati,et al.  Replanning: a New Perspective , 2005 .

[13]  Ivan Serina,et al.  Plan Stability: Replanning versus Plan Repair , 2006, ICAPS.

[14]  Bernhard Nebel,et al.  Continual planning and acting in dynamic multiagent environments , 2006, PCAR '06.

[15]  Andrew Coles,et al.  Marvin: A Heuristic Search Planner with Online Macro-Action Learning , 2011, J. Artif. Intell. Res..

[16]  Subbarao Kambhampati,et al.  When is Temporal Planning Really Temporal? , 2007, IJCAI.

[17]  Ivan Serina,et al.  Efficient Plan Adaptation through Replanning Windows and Heuristic Goals , 2010, RCRA.

[18]  Hector Muñoz-Avila,et al.  Case-Based Plan Adaptation: An Analysis and Review , 2008, IEEE Intelligent Systems.

[19]  Ivan Serina,et al.  An approach to efficient planning with numerical fluents and multi-criteria plan quality , 2008, Artif. Intell..

[20]  Antonio Garrido,et al.  Anytime Plan-Adaptation for Continuous Planning , 2010 .

[21]  Brian Charles Williams,et al.  Drake: An Efficient Executive for Temporal Plans with Choice , 2011, J. Artif. Intell. Res..

[22]  Christian J. Muise,et al.  Monitoring the Execution of Partial-Order Plans via Regression , 2011, IJCAI.

[23]  Christian J. Muise,et al.  Optimally Relaxing Partial-Order Plans with MaxSAT , 2012, ICAPS.

[24]  Andrew Coles,et al.  COLIN: Planning with Continuous Linear Numeric Change , 2012, J. Artif. Intell. Res..

[25]  Lukás Chrpa,et al.  Generating Macro-Operators by Exploiting Inner Entanglements , 2013, SARA.

[26]  Patrik Haslum,et al.  Plan Quality Optimisation via Block Decomposition , 2013, IJCAI.

[27]  Enrico Scala,et al.  Plan Repair for Resource Constrained Tasks via Numeric Macro Actions , 2014, ICAPS.

[28]  Paolo Traverso,et al.  The actor's view of automated planning and acting: A position paper , 2014, Artif. Intell..

[29]  Brian Charles Williams,et al.  Concurrent Plan Recognition and Execution for Human-Robot Teams , 2014, ICAPS.