Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons.

We demonstrated the nonvolatile memory functionality of ZnO nanowire field effect transistors (FETs) using mobile protons that are generated by high-pressure hydrogen annealing (HPHA) at relatively low temperature (400 °C). These ZnO nanowire devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We show that the memory characteristics are attributed to the movement of protons between the Si/SiO(2) interface and the SiO(2)/ZnO nanowire interface by the applied gate electric field. The memory mechanism is explained in terms of the tuning of interface properties, such as effective electric field, surface charge density, and surface barrier potential due to the movement of protons in the SiO(2) layer, consistent with the UV photoresponse characteristics of nanowire memory devices. Our study will further provide a useful route of creating memory functionality and incorporating proton-based storage elements onto a modified CMOS platform for FET memory devices using nanomaterials.

[1]  Hendrik Faber,et al.  Low‐Temperature Solution‐Processed Memory Transistors Based on Zinc Oxide Nanoparticles , 2009 .

[2]  Yulin Deng,et al.  Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. , 2007, Journal of the American Chemical Society.

[3]  de Peter Jan Veen Interface Engineering for Organic Electronics; Manufacturing of Hybrid Inorganic-Organic Molecular Crystal Devices , 2011 .

[4]  C. Viswanathan,et al.  Low-temperature mobility measurements on CMOS devices , 1989 .

[5]  Sunghoon Song,et al.  Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments , 2008 .

[6]  Hyunsang Hwang,et al.  Hybrid Complementary Logic Circuits of One‐Dimensional Nanomaterials with Adjustment of Operation Voltage , 2009 .

[7]  A. Douvas,et al.  Molecular Storage Elements for Proton Memory Devices , 2008 .

[8]  Charles M. Lieber,et al.  Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires , 2002 .

[9]  Sung-Min Yoon,et al.  Fully Transparent Non‐volatile Memory Thin‐Film Transistors Using an Organic Ferroelectric and Oxide Semiconductor Below 200 °C , 2010 .

[10]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[11]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[12]  Kimoon Lee,et al.  Flexible low voltage nonvolatile memory transistors with pentacene channel and ferroelectric polymer , 2009 .

[13]  Woojin Park,et al.  Tuning of the electronic characteristics of ZnO nanowire field effect transistors by proton irradiation. , 2010, ACS nano.

[14]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[15]  Seong-Wan Ryu,et al.  Nonvolatile memory based on sol-gel ZnO thin-film transistors with Ag nanoparticles embedded in the ZnO/gate insulator interface , 2008 .

[16]  Zhiyong Fan,et al.  Controlled nanoscale doping of semiconductors via molecular monolayers. , 2008, Nature materials.

[17]  R. Agarwal,et al.  Heterointerfaces in semiconductor nanowires. , 2008, Small.

[18]  Chao Li,et al.  charge storage behavior of nanowire transistors functionalized with bis(terpyridine)-Fe(II) molecules: dependence on molecular structure. , 2004, Journal of the American Chemical Society.

[19]  Yan Zhang,et al.  Optimizing the power output of a ZnO photocell by piezopotential. , 2010, ACS nano.

[20]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[21]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[22]  Zhenguo Yang,et al.  Oriented nanostructures for energy conversion and storage. , 2008, ChemSusChem.

[23]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[24]  Hongtao Yuan,et al.  Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. , 2010, Journal of the American Chemical Society.

[25]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[26]  R. Devine Comparitive behavior of radiation and thermally generated protons in amorphous SiO2 , 2001 .

[27]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[28]  Peidong Yang,et al.  ZnO nanowire transistors. , 2005, The journal of physical chemistry. B.

[29]  P. Yang,et al.  Nanowire Photonics Nanowire Growth , 2009 .

[30]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[31]  Seong-Ju Park,et al.  Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors. , 2008, Nano letters.

[32]  Gengfeng Zheng,et al.  Nanowire sensors for medicine and the life sciences. , 2006, Nanomedicine.

[33]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[34]  D. Fleetwood,et al.  Non-volatile memory device based on mobile protons in SiO2 thin films , 1997, Nature.

[35]  Zhong Lin Wang,et al.  Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. , 2006, Nano letters.

[36]  Xiao Wei Sun,et al.  Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. , 2009, ACS nano.