Generalized inverted exponential distribution under progressive first-failure censoring

This article deals with progressive first-failure censoring, which is a generalization of progressive censoring. We derive maximum likelihood estimators of the unknown parameters and reliability characteristics of generalized inverted exponential distribution using progressive first-failure censored samples. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher's information matrix. Bayes estimators of the parameters and reliability characteristics under squared error loss function are obtained using the Lindley approximation and importance sampling methods. Also, highest posterior density credible intervals for the parameters are computed using importance sampling procedure. A Monte Carlo simulation study is conducted to analyse the performance of the estimators derived in the article. A real data set is discussed for illustration purposes. Finally, an optimal censoring scheme has been suggested using different optimality criteria.

[1]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[2]  Uditha Balasooriya,et al.  Failure–censored reliability sampling plans for the exponential distribution , 1995 .

[3]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[4]  K. S. Sultan,et al.  Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring , 2014 .

[5]  Narayanaswamy Balakrishnan,et al.  A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .

[6]  Ahmed A. Soliman,et al.  Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data , 2012, Comput. Stat. Data Anal..

[7]  W. R. Buckland,et al.  Theory and Technique of Variation Research. , 1965 .

[8]  Kapil Kumar,et al.  Reliability estimation in Lindley distribution with progressively type II right censored sample , 2011, Math. Comput. Simul..

[9]  Sanku Dey,et al.  On progressively censored generalized inverted exponential distribution , 2014 .

[10]  Debasis Kundu,et al.  On progressively censored generalized exponential distribution , 2009 .

[11]  Shuo-Jye Wu,et al.  On estimation based on progressive first-failure-censored sampling , 2009, Comput. Stat. Data Anal..

[12]  A. M. Abouammoh,et al.  Reliability estimation of generalized inverted exponential distribution , 2009 .

[13]  Babatunde Ogunnaike,et al.  Reliability and Life Testing , 2009 .

[14]  Hare Krishna,et al.  Estimation of P(Y < X) in Lindley distribution using progressively first failure censoring , 2015, Int. J. Syst. Assur. Eng. Manag..

[15]  T. Bjerkedal Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. , 1960, American journal of hygiene.

[16]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[17]  E. Kay,et al.  Methods for statistical analysis of reliability and life data , 1974 .

[18]  Hare Krishna,et al.  Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample , 2013 .

[19]  Y. Lio,et al.  Estimation of δ=P(X, 2012 .

[20]  H. Akaike A new look at the statistical model identification , 1974 .

[21]  A. Cohen,et al.  Progressively Censored Samples in Life Testing , 1963 .

[22]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[23]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[24]  Jong-Wuu Wu,et al.  Statistical inference about the shape parameter of the Burr type XII distribution under the failure-censored sampling plan , 2005, Appl. Math. Comput..

[25]  Debasis Kundu,et al.  Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data , 2010, Comput. Stat. Data Anal..

[26]  Jong-Wuu Wu,et al.  Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan , 2003 .

[27]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[28]  Otto Dykstra,et al.  Theory and Technique of Variation Research , 1965 .

[29]  Umesh Singh,et al.  Bayesian estimation of parameters of inverse Weibull distribution , 2013 .

[30]  Sanku Dey,et al.  Generalized inverted exponential distribution under hybrid censoring , 2014 .