Graph Theory and Network Models in Landscape Genetics

[1]  Patrick N. Halpin,et al.  Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation , 2007, Landscape Ecology.

[2]  Raimundo Real,et al.  Using crisp and fuzzy modelling to identify favourability hotspots useful to perform gap analysis , 2008, Biodiversity and Conservation.

[3]  M. Nei Analysis of gene diversity in subdivided populations. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Kalinowski,et al.  Do polymorphic loci require large sample sizes to estimate genetic distances? , 2005, Heredity.

[5]  Jeff Bowman,et al.  Applications of graph theory to landscape genetics , 2008, Evolutionary applications.

[6]  Erin L. Koen,et al.  The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement , 2010, PloS one.

[7]  L. Cavalli-Sforza,et al.  PHYLOGENETIC ANALYSIS: MODELS AND ESTIMATION PROCEDURES , 1967, Evolution; international journal of organic evolution.

[8]  R. Willig,et al.  The Economic Gradient Method , 1979 .

[9]  J. Evans,et al.  Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. , 2010, Ecology.

[10]  Viral B. Shah,et al.  Using circuit theory to model connectivity in ecology, evolution, and conservation. , 2008, Ecology.

[11]  Mark S. Boyce,et al.  Corridors for Conservation: Integrating Pattern and Process , 2006 .

[12]  L. Cavalli-Sforza,et al.  High resolution of human evolutionary trees with polymorphic microsatellites , 1994, Nature.

[13]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[14]  R. Dyer The evolution of genetic topologies. , 2007, Theoretical population biology.

[15]  Ferenc Jordán,et al.  Graph theory in action: evaluating planned highway tracks based on connectivity measures , 2009, Landscape Ecology.

[16]  Samuel A. Cushman,et al.  Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies , 2008 .

[17]  Marie-Josée Fortin,et al.  From Graphs to Spatial Graphs , 2010 .

[18]  Robert S Schick,et al.  Graph models of habitat mosaics. , 2009, Ecology letters.

[19]  R. Dyer,et al.  Pollination graphs: quantifying pollen pool covariance networks and the influence of intervening landscape on genetic connectivity in the North American understory tree, Cornus florida L. , 2011, Landscape Ecology.

[20]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[21]  Dean L Urban,et al.  Graph theory as a proxy for spatially explicit population models in conservation planning. , 2007, Ecological applications : a publication of the Ecological Society of America.

[22]  Y. Xia,et al.  Measles Metapopulation Dynamics: A Gravity Model for Epidemiological Coupling and Dynamics , 2004, The American Naturalist.

[23]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[24]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[25]  Santiago Saura,et al.  Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity , 2009, Environ. Model. Softw..

[26]  S WRIGHT,et al.  Genetical structure of populations. , 1950, Nature.

[27]  Brett Peters,et al.  Forecasting the Expansion of Zebra Mussels in the United States , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[28]  J. Nason,et al.  Not just vicariance: phylogeography of a Sonoran Desert euphorb indicates a major role of range expansion along the Baja peninsula , 2009, Molecular ecology.

[29]  Andrew Fall,et al.  The sensitivity of least-cost habitat graphs to relative cost surface values , 2010, Landscape Ecology.

[30]  Marie-Josée Fortin,et al.  Structure and function of wildfire and mountain pine beetle forest boundaries , 2006 .

[31]  D. Penny,et al.  The Use of Tree Comparison Metrics , 1985 .

[32]  Masatoshi Nei,et al.  Genetic Distance between Populations , 1972, The American Naturalist.

[33]  Alan Wilson,et al.  A statistical theory of spatial distribution models , 1967 .

[34]  Erin L. Koen,et al.  The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites , 2013, PloS one.

[35]  Clifford E. Kraft,et al.  PREDICTION OF LONG‐DISTANCE DISPERSAL USING GRAVITY MODELS: ZEBRA MUSSEL INVASION OF INLAND LAKES , 2001 .

[36]  Bette A. Loiselle,et al.  Spatial genetic structure of a tropical understory shrub, PSYCHOTRIA OFFICINALIS (RuBIACEAE) , 1995 .

[37]  V. Eguíluz,et al.  Network analysis identifies weak and strong links in a metapopulation system , 2008, Proceedings of the National Academy of Sciences.

[38]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[39]  Maile C. Neel,et al.  Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae) , 2008 .

[40]  Rod Peakall,et al.  Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure , 1999, Heredity.

[41]  M. Fricker,et al.  Biological solutions to transport network design , 2007, Proceedings of the Royal Society B: Biological Sciences.

[42]  S. Kalinowski,et al.  Landscape influences on genetic differentiation among bull trout populations in a stream‐lake network , 2010, Molecular ecology.

[43]  M. Kimura,et al.  The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. , 1964, Genetics.

[44]  Derek de Solla Price,et al.  A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..

[45]  J. Nason,et al.  Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks , 2010, Molecular ecology.

[46]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[47]  M Slatkin,et al.  Gene flow and the geographic structure of natural populations. , 1987, Science.

[48]  Frank W Davis,et al.  Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change , 2010, Molecular ecology.

[49]  M. Lynch,et al.  Estimation of pairwise relatedness with molecular markers. , 1999, Genetics.

[50]  L. Madec,et al.  Genetic distances and ordination: the land snail Helix aspersa in north Africa as a test case. , 1998, Systematic biology.

[51]  A. Kimerling,et al.  A per-segment approach to improving aspen mapping from high-resolution remote sensing imagery , 2003 .

[52]  L. Madec,et al.  Microspatial genetic structure in the land snail Helix aspersa (Gastropoda: Helicidae) , 1999, Heredity.

[53]  Dylan Keon,et al.  Equations for potential annual direct incident radiation and heat load , 2002 .

[54]  L. Waits,et al.  Comparative landscape genetics of two pond‐breeding amphibian species in a highly modified agricultural landscape , 2010, Molecular ecology.

[55]  James E. Anderson A Theoretical Foundation for the Gravity Equation , 1979 .

[56]  J. Nason,et al.  Population Graphs: the graph theoretic shape of genetic structure , 2004, Molecular ecology.

[57]  Nicolas Schtickzelle,et al.  Metapopulation dynamics of the bog fritillary butterfly: comparison of demographic parameters and dispersal between a continuous and a highly fragmented landscape , 2003, Landscape Ecology.

[58]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[59]  Andrew Fall,et al.  Testing the importance of spatial configuration of winter habitat for woodland caribou: An application of graph theory , 2006 .

[60]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[61]  Jianguo Wu,et al.  The modifiable areal unit problem and implications for landscape ecology , 1996, Landscape Ecology.

[62]  Falk Huettmann,et al.  Spatial complexity, informatics, and wildlife conservation , 2010 .

[63]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[64]  A. Storfer,et al.  Landscape genetics of high mountain frog metapopulations , 2010, Molecular ecology.

[65]  Vladimir Batagelj,et al.  Exploratory Social Network Analysis with Pajek , 2005 .

[66]  Tatsuya Akutsu,et al.  Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs , 2009, Biosyst..

[67]  Timothy H. Keitt,et al.  LANDSCAPE CONNECTIVITY: A GRAPH‐THEORETIC PERSPECTIVE , 2001 .

[68]  P. Hedrick A STANDARDIZED GENETIC DIFFERENTIATION MEASURE , 2005, Evolution; international journal of organic evolution.

[69]  Pierre Faubet,et al.  Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates , 2007, Molecular ecology.

[70]  Timothy H Keitt,et al.  Species diversity in neutral metacommunities: a network approach. , 2007, Ecology letters.

[71]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[72]  Peter Arcese,et al.  Sensitivity Analyses of Spatial Population Viability Analysis Models for Species at Risk and Habitat Conservation Planning , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[73]  Matthew J Ferrari,et al.  A Gravity Model for the Spread of a Pollinator‐Borne Plant Pathogen , 2006, The American Naturalist.

[74]  S. Cushman,et al.  Spurious correlations and inference in landscape genetics , 2010, Molecular ecology.

[75]  Richard T. T. Forman,et al.  Landscape graphs: Ecological modeling with graph theory to detect configurations common to diverse landscapes , 1993, Landscape Ecology.

[76]  Andrew Fall,et al.  Connectivity for conservation: a framework to classify network measures. , 2011, Ecology.

[77]  Dean L Urban,et al.  A Graph‐Theory Framework for Evaluating Landscape Connectivity and Conservation Planning , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[78]  P. Legendre,et al.  MODELING BRAIN EVOLUTION FROM BEHAVIOR: A PERMUTATIONAL REGRESSION APPROACH , 1994, Evolution; international journal of organic evolution.

[79]  Hugh P. Possingham,et al.  Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns , 2008 .

[80]  K. Gaston,et al.  Commonness, population depletion and conservation biology. , 2008, Trends in ecology & evolution.