A Data-Reconstructed Fractional Volatility Model

Based on criteria of mathematical simplicity and consistency with empirical market data, a stochastic volatility model is constructed, the volatility process being driven by fractional noise. Price return statistics and asymptotic behavior are derived from the model and compared with data. Deviations from Black-Scholes and a new option pricing formula are also obtained.

[1]  Andrew J. Patton,et al.  What good is a volatility model? , 2001 .

[2]  K. Kaski,et al.  Models of asset returns: changes of pattern from high to low event frequency , 2004 .

[3]  A. Harvey Long memory in stochastic volatility , 2007 .

[4]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[5]  Option pricing with fractional volatility , 2004, cond-mat/0404684.

[6]  L. Oxley,et al.  Estimators for Long Range Dependence: An Empirical Study , 2009, 0901.0762.

[7]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[8]  Tanya Araújo,et al.  A Process-Reconstruction Analysis of Market Fluctuations , 2001 .

[9]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[10]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[11]  Victor M. Yakovenko,et al.  Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact , 2004 .

[12]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[13]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[14]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[15]  Yannick Malevergne,et al.  Empirical distributions of stock returns: between the stretched exponential and the power law? , 2003, physics/0305089.

[16]  D. Sornette,et al.  Empirical distributions of stock returns: between the stretched exponential and the power law? , 2005 .

[17]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[18]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[19]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[20]  V. Yakovenko,et al.  Probability distribution of returns in the Heston model with stochastic volatility , 2002, cond-mat/0203046.

[21]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[22]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[23]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .

[24]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .