A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations
暂无分享,去创建一个
Lawrence Mitchell | Patrick E. Farrell | L. Ridgway Scott | Florian Wechsung | L. R. Scott | L. Mitchell | P. Farrell | F. Wechsung
[1] Erik Burman,et al. A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation , 2020, SIAM Journal on Numerical Analysis.
[2] Matthew G. Knepley,et al. PCPATCH , 2019, ACM Trans. Math. Softw..
[3] Robust multigrid methods for nearly incompressible elasticity using macro elements , 2020, ArXiv.
[4] Guosheng Fu,et al. Exact smooth piecewise polynomial sequences on Alfeld splits , 2018, Math. Comput..
[5] Michael Neilan. The Stokes complex: A review of exactly divergence-free finite element pairs for incompressible flows , 2020, 75 Years of Mathematics of Computation.
[6] Lawrence Mitchell,et al. An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..
[7] S. Patankar. Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.
[8] Nicolas R. Gauger,et al. On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.
[9] Leo G. Rebholz,et al. Pressure-induced locking in mixed methods for time-dependent (Navier-)Stokes equations , 2018, J. Comput. Phys..
[10] Barry F. Smith,et al. PETSc Users Manual , 2019 .
[11] Naveed Ahmed,et al. Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations , 2017, Comput. Methods Appl. Math..
[12] Volker John,et al. On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..
[13] Andrew T. T. McRae,et al. Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..
[14] Matthew G. Knepley,et al. Extreme-Scale Multigrid Components within PETSc , 2016, PASC.
[15] Ludmil T. Zikatanov,et al. A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations , 2016, Numerische Mathematik.
[16] Christoph Lehrenfeld,et al. High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows , 2015, ArXiv.
[17] Tatyana Sorokina,et al. Multivariate C^1-Continuous Splines on the Alfeld Split of a Simplex , 2014 .
[18] G. Rapin,et al. Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .
[19] Shangyou Zhang. Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .
[20] Leo G. Rebholz,et al. A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..
[21] M. Benzi,et al. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .
[22] Shangyou Zhang. Divergence-free finite elements on tetrahedral grids for k≥6 , 2011, Math. Comput..
[23] Leo G. Rebholz,et al. Application of barycenter refined meshes in linear elasticity and incompressible fluid dynamics , 2011 .
[24] Jinbiao Wu,et al. Robust multigrid method for the planar linear elasticity problems , 2009, Numerische Mathematik.
[25] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[26] Erik Burman,et al. Stabilized finite element schemes for incompressible flow using Scott--Vogelius elements , 2008 .
[27] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[28] Zhang,et al. ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .
[29] Ludmil T. Zikatanov,et al. ROBUST SUBSPACE CORRECTION METHODS FOR NEARLY SINGULAR SYSTEMS , 2007 .
[30] Junping Wang,et al. New Finite Element Methods in Computational Fluid Dynamics by H(div) Elements , 2007, SIAM J. Numer. Anal..
[31] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..
[32] Maxim A. Olshanskii,et al. An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..
[33] P. Hansbo,et al. Mathematical Modelling and Numerical Analysis Edge Stabilization for the Generalized Stokes Problem: a Continuous Interior Penalty Method , 2022 .
[34] Miguel A. Fernández,et al. Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..
[35] John N. Shadid,et al. Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..
[36] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[37] Maxim A. Olshanskii,et al. Stabilized finite element schemes with LBB-stable elements for incompressible flows , 2005 .
[38] Shangyou Zhang,et al. A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..
[39] P. Hansbo,et al. Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .
[40] James Demmel,et al. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.
[41] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[42] Andrew J. Wathen,et al. A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..
[43] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[44] Joachim Schöberl,et al. Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.
[45] Stefan Turek,et al. Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.
[46] Joachim Schöberl,et al. Robust Multigrid Preconditioning for Parameter-Dependent Problems I: The Stokes-Type Case , 1998 .
[47] Xiaoye S. Li,et al. SuperLU Users'' Guide , 1997 .
[48] R. S. Falk,et al. PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .
[49] Susanne C. Brenner,et al. Multigrid methods for parameter dependent problems , 1996 .
[50] Olivier Pironneau,et al. The Stokes and Navier-Stokes equations with boundary conditions involving the pressure , 1994 .
[51] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[52] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[53] J. Wang,et al. Analysis of the Schwarz algorithm for mixed finite elements methods , 1992 .
[54] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[55] T. Shih,et al. Effects of grid staggering on numerical schemes , 1989 .
[56] G. Farin,et al. Ann-dimensional Clough-Tocher interpolant , 1987 .
[57] S. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .
[58] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .
[59] Peter Alfeld,et al. A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..
[60] Michael Vogelius,et al. Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .
[61] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[62] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[63] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .