A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations

Augmented Lagrangian preconditioners have successfully yielded Reynolds-robust preconditioners for the stationary incompressible Navier-Stokes equations, but only for specific discretizations. The discretizations for which these preconditioners have been designed possess error estimates which depend on the Reynolds number, with the discretization error deteriorating as the Reynolds number is increased. In this paper we present an augmented Lagrangian preconditioner for the Scott-Vogelius discretization on barycentrically-refined meshes. This achieves both Reynolds-robust performance and Reynolds-robust error estimates. A key consideration is the design of a suitable space decomposition that captures the kernel of the grad-div term added to control the Schur complement; the same barycentric refinement that guarantees inf-sup stability also provides a local decomposition of the kernel of the divergence. The robustness of the scheme is confirmed by numerical experiments in two and three dimensions.

[1]  Erik Burman,et al.  A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation , 2020, SIAM Journal on Numerical Analysis.

[2]  Matthew G. Knepley,et al.  PCPATCH , 2019, ACM Trans. Math. Softw..

[3]  Robust multigrid methods for nearly incompressible elasticity using macro elements , 2020, ArXiv.

[4]  Guosheng Fu,et al.  Exact smooth piecewise polynomial sequences on Alfeld splits , 2018, Math. Comput..

[5]  Michael Neilan The Stokes complex: A review of exactly divergence-free finite element pairs for incompressible flows , 2020, 75 Years of Mathematics of Computation.

[6]  Lawrence Mitchell,et al.  An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..

[7]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[8]  Nicolas R. Gauger,et al.  On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond , 2018, The SMAI journal of computational mathematics.

[9]  Leo G. Rebholz,et al.  Pressure-induced locking in mixed methods for time-dependent (Navier-)Stokes equations , 2018, J. Comput. Phys..

[10]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[11]  Naveed Ahmed,et al.  Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations , 2017, Comput. Methods Appl. Math..

[12]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[13]  Andrew T. T. McRae,et al.  Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..

[14]  Matthew G. Knepley,et al.  Extreme-Scale Multigrid Components within PETSc , 2016, PASC.

[15]  Ludmil T. Zikatanov,et al.  A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations , 2016, Numerische Mathematik.

[16]  Christoph Lehrenfeld,et al.  High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows , 2015, ArXiv.

[17]  Tatyana Sorokina,et al.  Multivariate C^1-Continuous Splines on the Alfeld Split of a Simplex , 2014 .

[18]  G. Rapin,et al.  Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .

[19]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[20]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[21]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[22]  Shangyou Zhang Divergence-free finite elements on tetrahedral grids for k≥6 , 2011, Math. Comput..

[23]  Leo G. Rebholz,et al.  Application of barycenter refined meshes in linear elasticity and incompressible fluid dynamics , 2011 .

[24]  Jinbiao Wu,et al.  Robust multigrid method for the planar linear elasticity problems , 2009, Numerische Mathematik.

[25]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[26]  Erik Burman,et al.  Stabilized finite element schemes for incompressible flow using Scott--Vogelius elements , 2008 .

[27]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[28]  Zhang,et al.  ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .

[29]  Ludmil T. Zikatanov,et al.  ROBUST SUBSPACE CORRECTION METHODS FOR NEARLY SINGULAR SYSTEMS , 2007 .

[30]  Junping Wang,et al.  New Finite Element Methods in Computational Fluid Dynamics by H(div) Elements , 2007, SIAM J. Numer. Anal..

[31]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[32]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[33]  P. Hansbo,et al.  Mathematical Modelling and Numerical Analysis Edge Stabilization for the Generalized Stokes Problem: a Continuous Interior Penalty Method , 2022 .

[34]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[35]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[36]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[37]  Maxim A. Olshanskii,et al.  Stabilized finite element schemes with LBB-stable elements for incompressible flows , 2005 .

[38]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[39]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[40]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[41]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[42]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[43]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[44]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[45]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[46]  Joachim Schöberl,et al.  Robust Multigrid Preconditioning for Parameter-Dependent Problems I: The Stokes-Type Case , 1998 .

[47]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[48]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .

[49]  Susanne C. Brenner,et al.  Multigrid methods for parameter dependent problems , 1996 .

[50]  Olivier Pironneau,et al.  The Stokes and Navier-Stokes equations with boundary conditions involving the pressure , 1994 .

[51]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[52]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[53]  J. Wang,et al.  Analysis of the Schwarz algorithm for mixed finite elements methods , 1992 .

[54]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[55]  T. Shih,et al.  Effects of grid staggering on numerical schemes , 1989 .

[56]  G. Farin,et al.  Ann-dimensional Clough-Tocher interpolant , 1987 .

[57]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[58]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[59]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[60]  Michael Vogelius,et al.  Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .

[61]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[62]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[63]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .