Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

[1]  Marisa Carrasco,et al.  Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence , 2013, Nature Reviews Neuroscience.

[2]  R. Remington,et al.  Eye Movement Targets Are Released from Visual Crowding , 2013, The Journal of Neuroscience.

[3]  Brian S. Schnitzer,et al.  Eye movements and attention: The role of pre-saccadic shifts of attention in perception, memory and the control of saccades , 2012, Vision Research.

[4]  M. Carrasco,et al.  Rapid Simultaneous Enhancement of Visual Sensitivity and Perceived Contrast during Saccade Preparation , 2012, The Journal of Neuroscience.

[5]  H. Railo,et al.  Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs , 2012, PloS one.

[6]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[7]  Michael A. Silver,et al.  Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex , 2010, NeuroImage.

[8]  Bart Farell,et al.  The binocular neural mechanism: gnostic and population coding , 2010 .

[9]  David Whitney,et al.  Attention Narrows Position Tuning of Population Responses in V1 , 2009, Current Biology.

[10]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[11]  Linda V. Heinemann,et al.  Exploring BOLD Changes during Spatial Attention in Non-Stimulated Visual Cortex , 2009, PloS one.

[12]  M. D’Esposito,et al.  Cholinergic Enhancement Reduces Spatial Spread of Visual Responses in Human Early Visual Cortex , 2008, Neuron.

[13]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[14]  Kathleen A. Hansen,et al.  Topographic Organization in and near Human Visual Area V4 , 2007, The Journal of Neuroscience.

[15]  A. Thiele,et al.  Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner , 2007, Nature Neuroscience.

[16]  Alex R. Wade,et al.  Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. , 2007, Journal of neurophysiology.

[17]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[18]  D. Bressler,et al.  Negative BOLD fMRI Response in the Visual Cortex Carries Precise Stimulus-Specific Information , 2007, PloS one.

[19]  Giedrius T Buracas,et al.  The Effect of Spatial Attention on Contrast Response Functions in Human Visual Cortex , 2007, The Journal of Neuroscience.

[20]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[21]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[22]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Stephen V. David,et al.  Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response , 2004, NeuroImage.

[24]  Peter Thier,et al.  Improvement of visual acuity by spatial cueing: a comparative study in human and non-human primates , 2004, Vision Research.

[25]  Notger G. Müller,et al.  The attentional ‘spotlight's’ penumbra: center-surround modulation in striate cortex , 2004, Neuroreport.

[26]  K. D. Singh,et al.  Negative BOLD in the visual cortex: Evidence against blood stealing , 2004, Human brain mapping.

[27]  Marisa Carrasco,et al.  Speed of visual processing increases with eccentricity , 2003, Nature Neuroscience.

[28]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[29]  Yaffa Yeshurun,et al.  Covert attention increases spatial resolution with or without masks: support for signal enhancement. , 2002, Journal of vision.

[30]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[31]  Luis A. Lesmes,et al.  Spatial attention excludes external noise at the target location. , 2002, Journal of vision.

[32]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[33]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[34]  Thom Carney,et al.  Electrophysiological estimate of human cortical magnification , 2001, Clinical Neurophysiology.

[35]  Christof Koch,et al.  Attentional effects on contrast detection in the presence of surround masks , 2000, Vision Research.

[36]  D. Heeger,et al.  Center-surround interactions in foveal and peripheral vision , 2000, Vision Research.

[37]  M. Carrasco,et al.  The locus of attentional effects in texture segmentation , 2000, Nature Neuroscience.

[38]  A. T. Smith,et al.  Attentional suppression of activity in the human visual cortex , 2000, Neuroreport.

[39]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[40]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[41]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[43]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[44]  Marisa Carrasco,et al.  Attention improves or impairs visual performance by enhancing spatial resolution , 1998, Nature.

[45]  M. Carrasco,et al.  The contribution of covert attention to the set-size and eccentricity effects in visual search. , 1998, Journal of experimental psychology. Human perception and performance.

[46]  Ronald S. Fishman,et al.  Gordon Holmes, the cortical retina, and the wounds of war , 1997, Documenta Ophthalmologica.

[47]  M. Carrasco,et al.  The eccentricity effect: Target eccentricity affects performance on conjunction searches , 1995, Perception & psychophysics.

[48]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[49]  F. Kitterle Psychophysics of lateral tachistoscopic presentation , 1986, Brain and Cognition.

[50]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[51]  Howard S. Bashinski,et al.  Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations , 1980, Perception & psychophysics.

[52]  H. Brettel,et al.  The peripheral critical flicker frequency , 1979, Vision Research.

[53]  H. BOUMA,et al.  Interaction Effects in Parafoveal Letter Recognition , 1970, Nature.

[54]  M. Carrasco,et al.  On the flexibility of sustained attention and its effects on a texture segmentation task , 2008, Vision Research.

[55]  David J Heeger,et al.  Neural correlates of sustained spatial attention in human early visual cortex. , 2007, Journal of neurophysiology.

[56]  MARISA CARRASCO,et al.  Cortical Magnification Neutralizes the Eccentricity Effect in Visual Search , 1997, Vision Research.

[57]  Vision Research , 1961, Nature.