Discrete Gaussian measures and new bounds of the smoothing parameter for lattices

In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that $$\varepsilon$$ ε is suitably small, we obtain two estimations of the smoothing parameter: 1. $$\begin{aligned} \displaystyle \eta _{\varepsilon }({{\mathbb {Z}}}) \le \sqrt{\frac{\ln \big (\frac{\varepsilon }{44}+\frac{2}{\varepsilon }\big )}{\pi }}. \end{aligned}$$ η ε ( Z ) ≤ ln ( ε 44 + 2 ε ) π . This is a practically useful case. For this case, our upper bound is very close to the exact value of $$\eta _{\varepsilon }({{\mathbb {Z}}})$$ η ε ( Z ) in that $$\sqrt{\frac{\ln \big (\frac{\varepsilon }{44}+\frac{2}{\varepsilon }\big )}{\pi }}-\eta _{\varepsilon }({{\mathbb {Z}}})\le \frac{\varepsilon ^2}{552}$$ ln ( ε 44 + 2 ε ) π - η ε ( Z ) ≤ ε 2 552 . 2. For a lattice $${{{\mathcal {L}}}}\subset {{\mathbb {R}}}^n$$ L ⊂ R n of dimension n , $$\begin{aligned} \displaystyle \eta _{\varepsilon }({{{\mathcal {L}}}}) \le \sqrt{\frac{\ln \big (n-1+\frac{2n}{\varepsilon }\big )}{\pi }}\tilde{bl}({{{\mathcal {L}}}}). \end{aligned}$$ η ε ( L ) ≤ ln ( n - 1 + 2 n ε ) π bl ~ ( L ) .

[1]  Elias M. Stein,et al.  Fourier Analysis: An Introduction , 2003 .

[2]  Craig Gentry,et al.  Trapdoors for hard lattices and new cryptographic constructions , 2008, IACR Cryptol. ePrint Arch..

[3]  Mingjie Liu,et al.  Measure inequalities and the transference theorem in the geometry of numbers , 2013 .

[4]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[5]  Chris Peikert,et al.  Limits on the Hardness of Lattice Problems in ℓp Norms , 2008, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[6]  Tim Güneysu,et al.  Enhanced Lattice-Based Signatures on Reconfigurable Hardware , 2014, CHES.

[7]  Wojciech Banaszczyk,et al.  Inequalities for convex bodies and polar reciprocal lattices inRn , 1995, Discret. Comput. Geom..

[8]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[9]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[10]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[11]  Feng-Hao Liu,et al.  On the Lattice Smoothing Parameter Problem , 2013, 2013 IEEE Conference on Computational Complexity.

[12]  Chris Peikert,et al.  Limits on the Hardness of Lattice Problems in ell _p Norms , 2007, CCC.

[13]  Wojciech Banaszczyk,et al.  Inequalities for convex bodies and polar reciprocal lattices inRn II: Application ofK-convexity , 1996, Discret. Comput. Geom..

[14]  Daniele Micciancio,et al.  Gaussian Sampling over the Integers: Efficient, Generic, Constant-Time , 2017, CRYPTO.

[15]  Xiaoyun Wang,et al.  Error Estimation of Practical Convolution Discrete Gaussian Sampling , 2018, IACR Cryptol. ePrint Arch..

[16]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[17]  T. Tao An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.

[18]  Chris Peikert,et al.  An Efficient and Parallel Gaussian Sampler for Lattices , 2010, CRYPTO.

[19]  Jin-Yi Cai,et al.  A new transference theorem in the geometry of numbers and new bounds for Ajtai's connection factor , 2003, Discret. Appl. Math..